CMSC423: Bioinformatic Algorithms, Databases and Tools

Alignment heuristics
Heuristics

• What if limit the # of differences allowed? E.g. we expect the sequences to be very similar.

• Compute 'banded' alignment – stay within # of differences (k) from the diagonal.

• Optimal alignment cannot stray too far from diagonal

\[O(km) \text{ running time and space} \]

• What if we do not know k? Do binary search to find it
Exclusion methods

- Assume P must match T with at most k errors. Find places in T where P cannot match.
- Split P into $\text{floor}(n/k+1)$-sized chunks.
- If P matches T with less than k errors => at least one chunk matches with no errors
- Use any exact matching algorithm to find places where a chunk matches T, then run dynamic programming in that vicinity.
- Running time, on average $O(m)$
Exclusion methods

Pattern

Text

Putative alignment

Exact match
"Famous" approaches

- FASTA (Pearson et al.)
 - Take all k-mers (substrings of length k) from Pattern and identify whether and where they match in the Text
 - Assume the k-mer starting at pos'n i in Pattern matches at position j in Text, remember \((j - i)\) – the diagonal on which the match occurred
 - Identify "heavy" diagonals – diagonals where many k-mers match, then refine the diagonals with Smith Waterman
 - Also look for off-diagonal matches to account for gaps
"Famous" approaches

- BLAST (Altschul et al.)
 - Find short k-mer matches
 - Also search for possible inexact matches, e.g. all k-mers within 1 difference from current one.
 - Extend exact matches with Smith-Waterman algorithm
 - Assign probabilistic scores to matches: what is the probability of finding a match with the same S-W alignment score just by chance (e.g. matching a random string)?
Aside: viewing alignments with dot-plots

Axes – two sequences/genomes, 'dots' – regions that match in the two genomes
Chaining approach

• Extends the FASTA idea
• Search for exact matches
• Find the longest consistent chain of exact matches
• Fill in the gaps in the chain using Smith-Waterman

• This is the approach used by MUMmer (Delcher et al.)
• MUM – maximally unique match (see mummer.sourceforge.net)
Chaining in 1-D

• Input: multiple overlapping intervals on a line
• Output: highest weight set of non-overlapping intervals
• Weight could be length of interval, or Smith-Waterman score, etc.
Chaining in 1D

- Basic idea – dynamic programming
- $V[j]$ – weight of best chain ending with interval j
 \[V[j] = \max_{k < j, \text{intervals k & j do not overlap}} (V[k] + \text{weight}(j)) \]
- i.e. find all possible ways of building a chain ending at j and pick the best one (the key to all dynamic programming algorithms)
- Where do we find the answer? largest value in V array
- How do we find the actual chain? backtracking
- What is the running time? $O(n^2)$
Chaining in 1D

- Sort the endpoints (starts, ends) of the intervals
- For every interval j, store $V[j]$ – best score of a chain ending in j
- MAX – store highest $V[j]$ seen sofar
- Process endpoints in increasing order of x coordinate
- If we encounter left end (start) of interval j
 - $V[j] = \text{weight}(j) + \text{MAX}$
- If we encounter right end (end) of interval j
 - $\text{MAX} = \max\{V[j], \text{MAX}\}$

Running time?

$O(n \log n)$ – from sorting
Chaining in 1-D

• Input: multiple overlapping intervals on a line
• Output: highest weight set of non-overlapping intervals
• Weight could be length of interval, or Smith-Waterman score, etc.

• Rationale? The pattern can have multiple inconsistent exact matches to the text – we want to pick a longest consistent set
Path “planning” and dynamic programming

• One intuitive way to think about dynamic programming
 – similar to finding shortest path between two points
 – at each “point” ask – what are all possible ways to get here?
 – pick the best (shortest, fastest, etc.)
Chaining in 2-D

- Easy to do in $O(n^2)$ (n - # of intervals)
- View alignments as "boxes"
- All boxes in a chain must follow each other in a "diagonal" order, i.e. the range of the x coordinates and y coordinates of any two boxes in a chain cannot overlap
- Similar to 1-D approach except at each step we must check if current box can extend any of the previously built chains
- $V[j] = \max_{\text{all previous boxes } k} \{V[k] + \text{weight}(j)\}$
- More complex algorithm leads to $O(n \log n)$ running time
Suffix trees + dynamic programming

- Idea: find inexact seeds (rather than exact matches)
- Observation: if two sequences match within x% identity there must be some short subsequence that also matches with at least x% identity
- Why is this useful? You can backtrack quickly if error rate exceeded (short sequences will have to be almost perfect).