CMSC423: Bioinformatic Algorithms, Databases and Tools

Exact string matching:
introduction
Sequence alignment: exact matching

ACAGGTACAGTTCCCTCGACACCTACTACCTAAG
CTACT
CTACT
CTACT
CTACT
CTACT

for i = 0 .. len(Text) {
 for j = 0 .. len(Pattern) {
 if (Pattern[j] != Text[i]) go to next i
 }
 if we got there pattern matches at i in Text
}

Running time = O(len(Text) * len(Pattern)) = O(mn)

What string achieves worst case?
Worst case?

\[(m - n + 1) \times n\] comparisons
Can we do better?

the Z algorithm (Gusfield)

For a string T, Z[i] is the length of the longest prefix of T[i..m] that matches a prefix of T. Z[i] = 0 if the prefixes don't match.

\[T[0 .. Z[i]] = T[i .. i+Z[i] -1] \]

\[
\begin{array}{c|c|c|c|c}
\text{A} & \text{T} \\
Z[i] & i & i + Z[i] - 1 & m \\
\end{array}
\]
Example Z values

ACAGGTACAGTTCCCTCGACACCTACTACCTAAG
00100040100000003020002002000110
Can the Z values help in matching?

Create string \(\text{Pattern}\$\text{Text} \) where \$ is not in the alphabet

If there exists \(i \), s.t. \(Z[i] = \text{length(Pattern)} \)
Pattern occurs in the Text starting at \(i \)
example matching

CCTACT$ACAGGTACAGTTCCTCCCTCGACACCTACTACCTAAG
01001000100000100002310100106100100410000

• What is the largest Z value possible?
Can Z values be computed in linear time?

Z[1]? compare T[1] with T[0], T[2] with T[1], etc. until mismatch
Z[1] = 2

This simple process is still expensive:
T[2] is compared when computing both Z[1] and Z[2].

Trick to computing Z values in linear time:
each comparison must involve a character that was not compared before

Since there are only m characters in the string, the overall # of comparisons will be O(m).
Basic idea: 1-D dynamic programming

Can $Z[i]$ be computed with the help of $Z[j]$ for $j < i$?

Assume there exists $j < i$, s.t. $j + Z[j] - 1 > i$
then $Z[i - j + 1]$ provides information about $Z[i]$

If there is no such j, simply compare characters $T[i..]$ to $T[0..]$ since they have not been seen before.
Three cases

Let \(j < i \) be the coordinate that maximizes \(j + Z[j] - 1 \) (intuitively, the \(Z[j] \) that extends the furthest)

I. \(Z[i - j + 1] < Z[j] - i + j - 1 \) \(\Rightarrow \) \(Z[i] = Z[i - j + 1] \)

II. \(Z[i - j + 1] > Z[j] - i + j - 1 \) \(\Rightarrow \) \(Z[i] = Z[j] - i + j - 1 \)

III. \(Z[i - j + 1] = Z[j] - i + j - 1 \) \(\Rightarrow \) \(Z[i] = \text{??} \), compare from \(i + Z[i - j + 1] \)
Time complexity analysis

Why do these tricks save us time?

1. Cases I and II take constant time per Z-value computed – total time spent in these cases is $O(n)$

2. Case III might involve 1 or more comparisons per Z-value however:
 - every successful comparison (match) shifts the rightmost character that has been visited
 - every unsuccessful comparison terminates the “round” and algorithm moves on to the next Z-value

 total time spent in III cannot be more than # of characters in the text

Overall running time is $O(n)$
Space complexity?

• If using Z algorithm for matching, how many Z values do we need to store?

• Only need to remember Z-values for pattern and the “farthest reaching Z-value” (Z[j] in what we discussed before)
Some questions

• What are the Z-values for the following string:

TTAGGATAGCCATTAGCCTCATTAGGGGATTAGGATTAGGAT

• In the string above, what is the longest prefix that is repeated somewhere else in the string?

• Trace through the execution of the linear-time algorithm for computing the Z values for the string listed above. How many times do rules I, II, and III apply?
Z algorithm, not just for matching

- Lempel-Ziv compression (e.g. gzip)

 ![Diagram]

 $Z[i] \quad i \quad i + Z[i] - 1 \quad n$

 if $Z[i] = 0$, just send/store the character $T[i]$, otherwise, instead of sending $T[i..i+Z[i] - 1]$ ($Z[i] - 1$ characters/bytes) simply send $Z[i]$ (one number)

- Note: other exact matching algorithms used for data compression (e.g. Burrows-Wheeler transform relates to suffix arrays)
Knuth-Morris-Pratt algorithm

Given a Pattern and a Text, preprocess the Pattern to compute
sp[i] = length of longest prefix of P that matches a suffix of P[0..i]

• Compare P with T until finding a mis-match
 (at coordinate i + 1 in P and j + 1 in T).
• Shift P such that first sp[i] characters match T[j – sp[i] + 1 .. j].
• Continue matching from T[i+1], P[sp[i]+1]
Knuth-Morris-Pratt (KMP) Algorithm

Given a pattern (P) and a text block (T) you preprocess P to compute a zero-indexed array \(sp[] \) where \(sp[pos] \) contains the length of longest prefix of P that matches a suffix of P[0..pos]

Next 4 slides from Evan Golub
We compare P with T until finding a mismatch.
We’ll call that position $i+1$ in P and $j+1$ in T.

$$j=23$$

T

```
ABCD EFGH ABCD E
```

P

```
ABCD EFGH ABCD C
```

$i=11$

We then logically shift P using the sp value.
This allows the first $sp[i]$ characters to match $T[(j-sp[i]+1) .. j]$. We then continue comparing from $P[sp[i]+1]$ and $T[j+1]$
index: 0123456
pattern: AAAAAAAA
sp: 0123456

index: 0123456
pattern: AAAAAAAB
sp: 0123450

AAAAABAAAAAAAAABBBBBBBBBBBAAA
index: 0123456
pattern: ABACABC
sp: 0010120

ABABBABABAABABACABC
Boyer-Moore algorithm

Preprocess the pattern, computing, for every \(i \), \(L[i] = \) largest coordinate < \(n \), s.t. \(P[i..n] \) matches a suffix of \(P[1..L[i]] \) (inverted Z function).

Match the pattern backwards (starting at the right) until mismatch. Shift the pattern such that \(P[L[i] – n + i + 1] \) matches at \(T[j] \). Repeat.

Bad character rule: find character \(T[j – 1] \) in \(P \) and shift until it matches. Choose the longest shift (btwn. suffix & char. rules).
Boyer-Moore ... cont

• What if \(P[i..n] \) does not occur elsewhere prior to \(i \)?
• Find \(k > i \) s.t. \(P[1..(n-k)] \) matches \(P[k..n] \)

\[
\begin{array}{c}
\text{T} \\
\text{A} \\
\text{P} \\
\text{C} \\
\text{n-k} \\
\text{i} \\
\text{k} \\
\text{P'} \\
\text{C}
\end{array}
\]

• Also bad character rule:
 – if \(P[i] \) mismatches with \(T[j] \) – can shift \(P \) until we find a character equal to \(T[j] \) in \(P \) (above, shift until an \(A \) in \(P \) lines up to the \(A \) in \(T \))

• Putting it all together: compute the shift according to the suffix rules and the bad character rule and pick the largest
Questions

• Can you use the Z-values to efficiently compute the sp() values used in the KMP algorithm?

• How about the values used by the Boyer-Moore algorithm?