
CMSC423: Bioinformatic Algorithms,
Databases and Tools

Gene finding

Signals in DNA
• we have the genome sequence... now what?
• ...see chapter 9 ...
• Motifs are a kind of “signal” - pattern of DNA that is

“unexpected” in the genome of an organism
• Uncovering new motifs – already did this – Gibbs

sampling (local multiple alignment).
• Given a motif – how do we find where it occurs in a

genome?
• Remember? Motif=

– k consecutive positions
– frequency of occurrence of each base at these positions

Finding/scoring motifs
• Given motif M of length k – can be represented as a

Position Weight Matrix (PWM) – same thing as a
multiple alignment profile

• Scoring a region of the genome according to motif?
Given consecutive characters s1,...,sk

• How surprising is this? Need to compare to
background probabilities

pwmM={pc , i∣∀1≤i≤k , c∈}

pM ∣s1,. .. , sk =∏1≤i≤k
psi , i

pM ∣s1,. .. , sk =∏1≤i≤k
psi ,i /qs i

where qsi is background probability of character si in genome

Scoring motifs
• Note: Score usually presented as a log-likelihood

(log(p(M|s1...sk))
• The p/q ratios in the motif are often called Position

Specific Scoring Matrix (PSSM)
• The program psi-blast can search a sequence against

a database of PSSMs

• Motifs are just one piece of the puzzle
• How do we handle more complex “signals”

Gene finding/prediction
• Given a string of DNA, identify regions that might be

genes
• Question: What does a gene look like?

• Start codon: ATG
• Stop codon: TGA, TAG, TAA
• Splicing: GT...intron...AG

• Also, DNA composition is different in genes –
mutations are more likely in the third position of
codons.

Simple gene finder (in bacteria)
• Find all stop-codons in the genome
• For each stop-codon, identify an in-frame start-codon

upstream of it.
• Each section between a start and a stop is called an

ORF – open reading frame.
• The long ORFs are likely genes – evolution prevented

stop codons from occurring

• 3 stop codons, 64 possible codons => in random DNA
every 22nd codon is a stop.

GGC TAG ATG AGG GCT CTA ACT ATG GGC GCG TAA

Gene finding as machine learning
• Main question: does the ORF look like a gene?

• Given a set of examples – genes we already know
• and a string of DNA (e.g. ORF)
• compute the likelihood that the ORF is a gene.
• Note: more complex than motif finding

• Codon usage bias – not all codons for a same amino-
acid are equally likely

• K-mer (e.g. 6-mer) frequencies (instead of single-base
frequencies in motif finding)

UUU F 0.76 UCU S 0.27 UAU Y 0.77 UGU C 0.73
UUC F 0.24 UCC S 0.08 UAC Y 0.23 UGC C 0.27
UUA L 0.49 UCA S 0.23 UAA * 0.66 UGA * 0.14
UUG L 0.13 UCG S 0.06 UAG * 0.20 UGG W 1.00

CUU L 0.16 CCU P 0.28 CAU H 0.79 CGU R 0.26
CUC L 0.04 CCC P 0.07 CAC H 0.21 CGC R 0.06
CUA L 0.14 CCA P 0.49 CAA Q 0.78 CGA R 0.16
CUG L 0.05 CCG P 0.16 CAG Q 0.22 CGG R 0.05

AUU I 0.57 ACU T 0.36 AAU N 0.76 AGU S 0.28
AUC I 0.15 ACC T 0.08 AAC N 0.24 AGC S 0.08
AUA I 0.28 ACA T 0.42 AAA K 0.74 AGA R 0.36
AUG M 1.00 ACG T 0.15 AAG K 0.26 AGG R 0.11

GUU V 0.32 GCU A 0.34 GAU D 0.81 GGU G 0.30
GUC V 0.07 GCC A 0.07 GAC D 0.19 GGC G 0.09
GUA V 0.43 GCA A 0.44 GAA E 0.75 GGA G 0.41
GUG V 0.18 GCG A 0.15 GAG E 0.25 GGG G 0.20

Bacillus anthracis codon usage

Simple gene finder...better
• Find ORFs
• For each ORF, compute likelihood of codon

composition given codon usage table for organism:

p(codon 1)*p(codon 2)*... * p(codon n)

• if likelihood exceeds a certain threshold – call it a gene
• note: you should calculate likelihood on equal-length

windows to eliminate effect of ORF-length.

Simple gene finder: picking the threshold
• What is the right threshold?
• Answer: use training data (organism with known genes)
• Forall thresholds t between 0 and 1, stepping by 0.05

– label all ORFs as gene/not gene
– compare labels to known truth

• Pick threshold that makes fewest mistakes

• Actually: find best compromise between sensitivity
(ability to fish out the genes) and specificity (ability to
make few false predictions)

Assessing accuracy
• Confusion matrix: compare predictions to truth

Gene Not-gene

Gene True positive False positive
Type I error

Not-gene False
negative
Type II error

True negative

prediction

truth

Measures of accuracy

• Sensitivity (Sn, recall) – TP/TP+FN
• Specificity (Sp) – TN/TN+FP
• Precision – TP/TP+FP

• Usually reported as (Sp, Sn), or (precision, recall).
• Also:

F-score = 2*Precision*Recall/(Precision + Recall)

TP FP

FN TN

ROC(receiver operating characteristic) curve

If you vary the threshold, how do TP/FP rates change?
Higher curves are better (usually measured as Area Under ROC curve)

A more general solution
• Hidden Markov models
• States, transition probabilities, emission probabilities

• p(Si|Sj) – probability of transitioning to state i if we are
in state j

• p(σi|Sj) – probability of emitting symbol σi if we are in
state j

S1 S2 S3... ...
p(S2|S1)

p(S1|S2)

p(S3|S2)

p(S2|S3)

p(S1|S1) p(S2|S2) p(S3|S3)

p(σi|S1) p(σi|S1) p(σi|S1)

Why “Hidden”?
• Observers can see the emitted symbols of an HMM

but have no ability to know which state the HMM is
currently in.

• Thus, the goal is to infer the most likely hidden states
of an HMM based on the given sequence of emitted
symbols.

HMM Parameters
• Σ: set of emission characters.

– Ex.: Σ = {H, T} for coin tossing
– Σ = {1, 2, 3, 4, 5, 6} for dice tossing
– Σ = {A, C, T, G} for DNA

• Q: set of hidden states, each emitting symbols from Σ.
– Q={Fair,Biased} for coin tossing
– Q={gene, not gene} for bacteria
– Q={exon, intron, intergenic) for eukaryotes

GlimmerHMM model

Questions we can ask with HMMs
• Given an observed sequence of emitted characters (a

string of DNA), what is the most likely sequence of
states that generated the observed sequence?
– given a string of DNA and the model, break it up into genes
– solved by Viterbi algorithm

• Given an observed sequence of emitted characters,
what is the most likely state the model was in at time
t?
– given a string of DNA, how likely is it that a certain location is

inside a gene?
– solved by forward-backward algorithm

Training – the key to HMMs
• So far we've assumed that all probabilities are known.
• The training problem:

– given an HMM (just the states and connections)
– given several examples (e.g. known genes and intergenic

regions)
– compute the transition and emission probabilities

• Training is difficult!!
• Baum-Welch algorithm – iterative optimization

– start with estimates of the probabilities
– run model with training data
– re-estimate probabilities based on performance on training

data

Questions
• Given the G/C content for a genome (fraction of letters

in the genome that are G or C), what is the expected
distance between two stop codons? - requires Poisson
statistics

Advanced material (not on exam)

Viterbi algorithm
• Given an HMM and an output string, compute the

most likely path through the HMM that would result in
the given string

Intron Exon Intergenic

p(Inter|Exon) p(Inter|Inter)

p(Exon|Exon)

p(Exon|Inter)

p(Exon|Intr)

p(Intr|Exon)

p(Intr|Intr)

p(emission|Intr) p(emission|Exon) p(emission|Inter)

Viterbi algorithm

Intron

Exon

Intergenic

Intron

Exon

Intergenic

Intron

Exon

Intergenic

...

t0 t1 t2

x0 x1 x2
Observations:

maximize 1
0

() (|)
n

statej j j je x p state state −∏ over all possible state paths

dynamic programming algorithm

Viterbi algorithm
• S(k,i) – most likely path for x0..xi ends in state k

• S(l, i + 1) = maxk { S(k, i) * p(l|k) * p(emission of xi+1|l)}
 = p(emission of xi+1|l) * maxk {S(k,i) * p(l|k)}

• The optimal path is found by back-tracking
• Note: Viterbi is equivalent to finding longest path in a

graph
• Implementation problem: underflow – many products

of very small values
• Solution: work in log-space

– instead of probabilities use logarithm of probabilities
– instead of products use sums

Forward-backward algorithm
• Given an HMM and an output string of length n, what

is the probability that the HMM was in state k
at time i < n?

• Similar dynamic programming as Viterbi however
done twice:
– from t0 to ti (forwards)
– from tn to ti (backwards)

• In Viterbi recurrence replace max with ∑
– likelihood is a sum of probabilities - all possible paths that go

through state k at time i

Notes on training an HMM
• Gene finder output

– a set of predictions (exon, intron, intergenic, etc.)
– a probability (likelihood) for each prediction

• In addition to setting parameters for the model you
also need to pick a threshold – how high should the
probability be before you "believe" it.

Picking the "right" threshold
• Cross-validation (hold-out cross validation)

– divide training set into Training and Hold sets
– train in "Training"
– test result on "Hold" – adjust threshold until results look best

• k-fold cross-validation
– divide training set into K sub-sets
– train on K-1 sets and test on one of them
– repeat for different choices of "test" set

Receiver operating characteristic

