CMSC423: Bioinformatic Algorithms, Databases and Tools

Gene finding

Signals in DNA

- we have the genome sequence... now what?
- ...see chapter 9 ...
- Motifs are a kind of "signal" pattern of DNA that is "unexpected" in the genome of an organism
- Uncovering new motifs already did this Gibbs sampling (local multiple alignment).
- Given a motif how do we find where it occurs in a genome?
- Remember? Motif=
 - k consecutive positions
 - frequency of occurrence of each base at these positions

Finding/scoring motifs

 Given motif M of length k – can be represented as a Position Weight Matrix (PWM) – same thing as a multiple alignment profile

$$pwm_M = \{ p_{c,i} | \forall (1 \le i \le k, c \in \sigma) \}$$

Scoring a region of the genome according to motif?
 Given consecutive characters s₁,...,s_k

$$p(M|s_{1,\ldots},s_k) = \prod_{1 \le i \le k} p_{s_i,i}$$

 How surprising is this? Need to compare to background probabilities

$$p(M|s_{1,.}.,s_k) = \prod_{1 \le i \le k} p_{s_i,i}/q_{s_i}$$

where q_{s_i} is background probability of character s_i in genome

Scoring motifs

- Note: Score usually presented as a log-likelihood (log(p(M|s₁...s_k))
- The p/q ratios in the motif are often called Position Specific Scoring Matrix (PSSM)
- The program psi-blast can search a sequence against a database of PSSMs

- Motifs are just one piece of the puzzle
- How do we handle more complex "signals"

Gene finding/prediction

- Given a string of DNA, identify regions that might be genes
- Question: What does a gene look like?
- Start codon: ATG
- Stop codon: TGA, TAG, TAA
- Splicing: GT...intron...AG
- Also, DNA composition is different in genes mutations are more likely in the third position of codons.

Simple gene finder (in bacteria)

- Find all stop-codons in the genome
- For each stop-codon, identify an in-frame start-codon upstream of it.
- Each section between a start and a stop is called an ORF – open reading frame.
- The long ORFs are likely genes evolution prevented stop codons from occurring
- 3 stop codons, 64 possible codons => in random DNA every 22nd codon is a stop.

GGC TAG ATG AGG GCT CTA ACT ATG GGC GCG TAA

Gene finding as machine learning

- Main question: does the ORF look like a gene?
- Given a set of examples genes we already know
- and a string of DNA (e.g. ORF)
- compute the likelihood that the ORF is a gene.
- Note: more complex than motif finding
- Codon usage bias not all codons for a same aminoacid are equally likely
- K-mer (e.g. 6-mer) frequencies (instead of single-base frequencies in motif finding)

Bacillus anthracis codon usage

UCU S 0.27 UAU Y 0.77 UGU C 0.73 UUU F 0.76 UUC F 0.24 UCC S 0.08 UAC Y 0.23 UGC C 0.27 UUA L 0.49 UAA * 0.66 UCA S 0.23 UGA * 0.14 UUG L 0.13 UCG S 0.06 UAG * 0.20 UGG W 1.00 CUU L 0.16 CCU P 0.28 CAU H 0.79 CGU R 0.26 CUC L 0.04 CCC P 0.07 CAC H 0.21 CGC R 0.06 CUA L 0.14 CCA P 0.49 CAA Q 0.78 CGA R 0.16 CUG L 0.05 CCG P 0.16 CAG O 0.22 CGG R 0.05 AAU N 0.76 AGU S 0.28 AUU I 0.57 ACU T 0.36 AUC I 0.15 ACC T 0.08 AAC N 0.24 AGC S 0.08 AUA I 0.28 ACA T 0.42 AAA K 0.74 AGA R 0.36 ACG T 0.15 AAG K 0.26 AUG M 1.00 AGG R 0.11 GUU V 0.32 GCU A 0.34 GAU D 0.81 GGU G 0.30 GUC V 0.07 GCC A 0.07 GAC D 0.19 GGC G 0.09 GAA E 0.75 GGA G 0.41 GUA V 0.43 GCA A 0.44 GUG V 0.18 GCG A 0.15 GAG E 0.25 GGG G 0.20

Simple gene finder...better

- Find ORFs
- For each ORF, compute likelihood of codon composition given codon usage table for organism:

```
p(codon 1)*p(codon 2)*... * p(codon n)
```

- if likelihood exceeds a certain threshold call it a gene
- note: you should calculate likelihood on equal-length windows to eliminate effect of ORF-length.

Simple gene finder: picking the threshold

- What is the right threshold?
- Answer: use training data (organism with known genes)
- Forall thresholds t between 0 and 1, stepping by 0.05
 - label all ORFs as gene/not gene
 - compare labels to known truth
- Pick threshold that makes fewest mistakes
- Actually: find best compromise between sensitivity (ability to fish out the genes) and specificity (ability to make few false predictions)

Assessing accuracy

• Confusion matrix: compare predictions to truth

		Gene	Not-gene
orediction	Gene	True positive	False positive Type I error
	Not-gene	False negative Type II error	True negative

truth

Measures of accuracy

- Sensitivity (Sn, recall) TP/TP+FN
- Specificity (Sp) TN/TN+FP
- Precision TP/TP+FP
- Usually reported as (Sp, Sn), or (precision, recall).
- Also: F-score = 2*Precision*Recall/(Precision + Recall)

ROC(receiver operating characteristic) curve

If you vary the threshold, how do TP/FP rates change? Higher curves are better (usually measured as Area Under ROC curve)

A more general solution

- Hidden Markov models
- States, transition probabilities, emission probabilities

- p(S_i|S_j) probability of transitioning to state i if we are in state j
- $p(\sigma_{_i}|S_{_j})$ probability of emitting symbol $\sigma_{_i}$ if we are in state j

Why "Hidden"?

- Observers can see the emitted symbols of an HMM but have no ability to know which state the HMM is currently in.
- Thus, the goal is to infer the most likely hidden states of an HMM based on the given sequence of emitted symbols.

HMM Parameters

- Σ: set of emission characters.
 - Ex.: $\Sigma = \{H, T\}$ for coin tossing
 - $-\Sigma = \{1, 2, 3, 4, 5, 6\}$ for dice tossing
 - $-\Sigma = \{A, C, T, G\}$ for DNA
- Q: set of hidden states, each emitting symbols from Σ .
 - Q={Fair,Biased} for coin tossing
 - Q={gene, not gene} for bacteria
 - Q={exon, intron, intergenic) for eukaryotes

GlimmerHMM model

Questions we can ask with HMMs

- Given an observed sequence of emitted characters (a string of DNA), what is the most likely sequence of states that generated the observed sequence?
 - given a string of DNA and the model, break it up into genes
 - solved by Viterbi algorithm
- Given an observed sequence of emitted characters, what is the most likely state the model was in at time t?
 - given a string of DNA, how likely is it that a certain location is inside a gene?
 - solved by forward-backward algorithm

Training – the key to HMMs

- So far we've assumed that all probabilities are known.
- The training problem:
 - given an HMM (just the states and connections)
 - given several examples (e.g. known genes and intergenic regions)
 - compute the transition and emission probabilities
- Training is difficult!!
- Baum-Welch algorithm iterative optimization
 - start with estimates of the probabilities
 - run model with training data
 - re-estimate probabilities based on performance on training data

Questions

 Given the G/C content for a genome (fraction of letters in the genome that are G or C), what is the expected distance between two stop codons? - requires Poisson statistics

Advanced material (not on exam)

Viterbi algorithm

 Given an HMM and an output string, compute the most likely path through the HMM that would result in the given string

Viterbi algorithm t0 t1 t2 Intron Intron Intron

Exon

Intergenic

x2

Observations:

x0

Exon

Intergenic

maximize $\prod_{i=0}^{n} e_{state_j}(x_j) p(state_j | state_{j-1})$ over all possible state paths

dynamic programming algorithm

Exon

Intergenic

x1

Viterbi algorithm

- S(k,i) most likely path for x₀...x_i ends in state k
- S(I, i + 1) = max_k { S(k, i) * p(I|k) * p(emission of x_{i+1}|I)} = p(emission of x_{i+1}|I) * max_k {S(k,i) * p(I|k)}
- The optimal path is found by back-tracking
- Note: Viterbi is equivalent to finding longest path in a graph
- Implementation problem: underflow many products of very small values
- Solution: work in log-space
 - instead of probabilities use logarithm of probabilities
 - instead of products use sums

Forward-backward algorithm

- Given an HMM and an output string of length n, what is the probability that the HMM was in state k at time i < n?
- Similar dynamic programming as Viterbi however done twice:
 - from t0 to ti (forwards)
 - from tn to ti (backwards)
- In Viterbi recurrence replace max with \sum
 - likelihood is a sum of probabilities all possible paths that go through state k at time i

Notes on training an HMM

- Gene finder output
 - a set of predictions (exon, intron, intergenic, etc.)
 - a probability (likelihood) for each prediction
- In addition to setting parameters for the model you also need to pick a threshold – how high should the probability be before you "believe" it.

Picking the "right" threshold

- Cross-validation (hold-out cross validation)
 - divide training set into Training and Hold sets
 - train in "Training"
 - test result on "Hold" adjust threshold until results look best
- k-fold cross-validation
 - divide training set into K sub-sets
 - train on K-1 sets and test on one of them
 - repeat for different choices of "test" set

Receiver operating characteristic

