CMSC423: Bioinformatic Algorithms,
Databases and Tools

Gene finding

Signals in DNA

we have the genome sequence... now what?
...see chapter 9 ...

Motifs are a kind of “signal” - pattern of DNA that is
“unexpected” in the genome of an organism

Uncovering new motifs — already did this — Gibbs
sampling (local multiple alignment).

Given a motif — how do we find where it occurs in a
genome?

Remember? Motif=

— Kk consecutive positions

— frequency of occurrence of each base at these positions

Finding/scoring motifs

« Given motif M of length k — can be represented as a
Position Weight Matrix (PWM) — same thing as a
multiple alignment profile

pwm,={p. .|V (1<i<k,c€0)|
« Scoring a region of the genome according to motif?

Given consecutive characters s ,...,s

p(M |S1,.”) Sk)=H1§i§k pS,-,i

* How surprising is this? Need to compare to
background probabilities

p<M |S1,."’ Sk)=H1SiSk pSi,i/qSi
where g, 1s background probability of character s,1n genome

Scoring motifs

Note: Score usually presented as a log-likelihood
(log(p(Mls....s,))

The p/q ratios in the motif are often called Position
Specific Scoring Matrix (PSSM)

The program psi-blast can search a sequence against
a database of PSSMs

Motifs are just one piece of the puzzle
How do we handle more complex “signals”

Gene finding/prediction
Given a string of DNA, identify regions that might be
genes
Question: What does a gene look like?

Start codon: ATG
Stop codon: TGA, TAG, TAA
Splicing: GT...intron...AG

Also, DNA composition is different in genes —
mutations are more likely in the third position of
codons.

Simple gene finder (in bacteria)

Find all stop-codons in the genome

For each stop-codon, identify an in-frame start-codon
upstream of it.

Each section between a start and a stop is called an
ORF - open reading frame.

The long ORFs are likely genes — evolution prevented
stop codons from occurring

3 stop codons, 64 possible codons => in random DNA
every 22" codon is a stop.

GGC TAG ATG AGG GCT CTAACT ATG GGC GCG TAA

Gene finding as machine learning

Main question: does the ORF look like a gene?

Given a set of examples — genes we already know
and a string of DNA (e.g. ORF)

compute the likelihood that the ORF is a gene.
Note: more complex than motif finding

Codon usage bias — not all codons for a same amino-
acid are equally likely

K-mer (e.g. 6-mer) frequencies (instead of single-base
frequencies in motif finding)

Bacillus anthracis codon usage

Uuuu F 0.76 UCU S 0.27 UAU Y 0.77 UGU C 0.73
uucC F 0.24 UCC S 0.08 UAC Y 0.23 UGC C 0.27
UUA L 0.49 UCA S 0.23 UAA * 0.66 UGA * 0.14
UuG L 0.13 UCG S 0.06 UAG * 0.20 UGG W 1.00
CUU L 0.1 CCU P 0.28 CAU H 0.79 CGU R 0.26
CuC L 0.04 c¢CccC P 0.07 CAC H 0.21 CGC R 0.06
CUA L 0.14 CCA P 0.49 CAA Q 0.78 CGA R 0.1le6
CUG L 0.05 CCG P 0.1 CAG Q 0.22 CGG R 0.05
AUU I 0.57 ACU T 0.36 AAU N O0.76 AGU S 0.28
AUC I 0.15 ACC T 0.08 AAC N 0.24 AGC S 0.08
AUA I 0.28 ACA T 0.42 AAA K 0.74 AGA R 0.36
AUG M 1.00 ACG T 0.15 AAG K 0.26 AGG R 0.11
GUU Vv 0.32 GCU A 0.34 GAU D 0.81 GGU G 0.30
GuC v 0.07 GCC A 0.07 GAC D 0.19 GGC G 0.09
GUA V 0.43 GCA A 0.44 GAA E 0.75 GGA G 0.41
GUG V 0.18 GCG A 0.15 GAG E 0.25 GGG G 0.20

Simple gene finder...better

Find ORFs

For each ORF, compute likelihood of codon
composition given codon usage table for organism:

p(codon 1)*p(codon 2)*... * p(codon n)
If likelihood exceeds a certain threshold — call it a gene

note: you should calculate likelihood on equal-length
windows to eliminate effect of ORF-length.

Simple gene finder: picking the threshold

What is the right threshold?
Answer: use training data (organism with known genes)
Forall thresholds t between 0 and 1, stepping by 0.05

— label all ORFs as gene/not gene
— compare labels to known truth

Pick threshold that makes fewest mistakes

Actually: find best compromise between sensitivity
(ability to fish out the genes) and specificity (ability to
make few false predictions)

prediction

Assessing accuracy

« Confusion matrix: compare predictions to truth

truth

Gene

Not-gene

Gene

True positive

False positive
Type | error

Not-gene

False
negative

Type |l error

True negative

Measures of accuracy

Sensitivity (Sn, recall) — TP/TP+FN
Specificity (Sp) — TN/TN+FP
Precision — TP/TP+FP

Usually reported as (Sp, Sn), or (precision, recall).

Also:
F-score = 2*Precision*Recall/(Precision + Recall)

TP FP
FN TN

ROC(receiver operating characteristic) curve

L
E
o
=
E.-_~:._ —— NetChop C-term 3.0
2 — TAP + ProteaSMM-i
= ProteaSMM-i
! | N | !
0.2 0.4 0.6 0.8 |

False positive rate

If you vary the threshold, how do TP/FP rates change?
Higher curves are better (usually measured as Area Under ROC curve)

A more general solution

Hidden Markov models

States, transition probabilities, emission probabilities
p(S1/S1) p(S2IS2) p(S3|S3)

/ \'\E(SHS%/ \'\P(S2\S3% \\

p(cilS1) p(ci/S1) P(oilS1)

p(Si|Sj) — probability of transitioning to state i if we are
In state |

p(0i|Sj) — probability of emitting symbol o if we are in
state |

Why “Hidden”?

* Observers can see the emitted symbols of an HMM
but have no ability to know which state the HMM is

currently in.

* Thus, the goal is to infer the most likely hidden states
of an HMM based on the given sequence of emitted
symbols.

HMM Parameters

« 2: set of emission characters.
— Ex.: 2 ={H, T} for coin tossing
-2={1,2, 3, 4,5, 6} for dice tossing
— ¥ ={A, C, T, G} for DNA

« Q: set of hidden states, each emitting symbols from 2.
— Q={Fair,Biased} for coin tossing
— Q={gene, not gene} for bacteria
— Q={exon, intron, intergenic) for eukaryotes

GlimmerHMM model
Exoﬂnl+

—_—

—————— Intergenic i

Exon Sngl-

Questions we can ask with HMMs

* Given an observed sequence of emitted characters (a
string of DNA), what is the most likely sequence of
states that generated the observed sequence?

— given a string of DNA and the model, break it up into genes
— solved by Viterbi algorithm

* Given an observed sequence of emitted characters,
what is the most likely state the model was in at time
t?

— given a string of DNA, how likely is it that a certain location is
inside a gene?
— solved by forward-backward algorithm

Training — the key to HMMSs

So far we've assumed that all probabilities are known.

The training problem:
— given an HMM (just the states and connections)

— given several examples (e.g. known genes and intergenic
regions)
— compute the transition and emission probabilities

Training is difficult!!
Baum-Welch algorithm — iterative optimization
— start with estimates of the probabilities

— run model with training data

— re-estimate probabilities based on performance on training
data

Questions

« Given the G/C content for a genome (fraction of letters
in the genome that are G or C), what is the expected
distance between two stop codons? - requires Poisson
statistics

Advanced material (not on exam)

Viterbi algorithm

« Given an HMM and an output string, compute the
most likely path through the HMM that would result in

the given string

p(Exon|Exon)

p(Inter|Exon) p(Inter|Inter)

/ p(Intr|Exon)

p(emission|intr) p(emission|Exon)

p(Exonl|Inter) \

p(emission|inter)

Viterbi algorithm

tO t1 t2
Intron Intron @
A@Aw
Observations:
x0 X1 X2

maximize |'| e...; (X,) p(state | state ;) over all possible state paths
0

dynamic programming algorithm

Viterbi algorithm

S(k,i) — most likely path for x ..x ends in state k

S(l, i +1)=max,{S(k, i) * p(llk) * p(emission of x.,|)}
= p(emission of x,.|I) * max, {S(k,i) * p(l]k)}

The optimal path is found by back-tracking

Note: Viterbi is equivalent to finding longest path in a
graph

Implementation problem: underflow — many products
of very small values

Solution: work in log-space

— instead of probabilities use logarithm of probabilities
— instead of products use sums

Forward-backward algorithm

« Given an HMM and an output string of length n, what
Is the probability that the HMM was in state k
attime i <n?

« Similar dynamic programming as Viterbi however
done twice:
— from t0 to ti (forwards)
— from tn to ti (backwards)

* In Viterbi recurrence replace max with)

— likelihood is a sum of probabilities - all possible paths that go
through state k at time |

Notes on training an HMM

* Gene finder output
— a set of predictions (exon, intron, intergenic, etc.)
— a probability (likelihood) for each prediction
 |n addition to setting parameters for the model you

also need to pick a threshold — how high should the
probability be before you "believe" it.

Picking the "right" threshold

* Cross-validation (hold-out cross validation)
— divide training set into Training and Hold sets
— train in "Training"
— test result on "Hold" — adjust threshold until results look best

» k-fold cross-validation
— divide training set into K sub-sets
— train on K-1 sets and test on one of them
— repeat for different choices of "test" set

Receiver operating characteristic

1

100%

P{TP)

0% P(FP) 100%

