
CMSC423: Bioinformatic
Algorithms, Databases and Tools

Genome assembly

CMSC423 Fall 2009 2

Reading assignment
• http://www.cbcb.umd.edu/research/assembly_primer.shtml
• Chapter 4.5 – coverage statistics
• Chapter 8 – genome assembly
• http://amos.sourceforge.net

CMSC423 Fall 2009 3

Shotgun sequencing

shearing

sequencing

assembly
original DNA (hopefully)

CMSC423 Fall 2009 4

Overview of terms

Assembly

Scaffolding

CMSC423 Fall 2009 5

Assembly Glossary
● Read – small (50-2000bp) segment of DNA "read" by

a sequencing instrument
● Mate-pair, paired ends – pair of reads whose distance

from each other within the genome is approximately
known

● Contig – contiguous segment of DNA reconstructed
(unambiguously) from a set of reads

● Scaffold – group of contigs that can be ordered and
oriented with respect to each other (usually with the
help of mate-pair data)

CMSC423 Fall 2009 6

So...
● Sequencing technologies only "read" small chunks of

DNA, yet genomes are substantially larger
● The shotgun sequencing approach generates many

random fragments from the original DNA
● The task of the assembly program is to stitch together

the many small pieces into a reconstruction of the
genome

● Essentially..... a huge jigsaw puzzle

● Think: shred a collection of Harry Potter books at
random then try to rebuild the original without any
additional information.

CMSC423 Fall 2009 7

Shortest common superstring problem
Given a set of strings, Σ=(s1, ..., sn), determine the shortest string S
such that every si is a sub-string of S.
NP-hard
approximations: 4, 3, 2.89, ...

Greedy algorithm (4-approximation)

phrap, TIGR Assembler, CAP

...ACAGGACTGCACAGATTGATAG
 ACTGCACAGATTGATAGCTGA...

CMSC423 Fall 2009 8

Greedy algorithm details
Compute all pairwise overlaps
*Pick best (e.g. in terms of alignment score) overlap
Join corresponding reads
Repeat from * until no more joins possible

• How do you compute an overlap alignment?
• Hint: modify Smith-Waterman dynamic programming

algorithm

CMSC423 Fall 2009 9

Repeats (where greedy fails)

AAAAAAAAAAAAAAAAAAAA
AAAAAA AAAAAA AAAAAA

AAAAAA AAAAAA
AAAAAA AAAAAA

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

CMSC423 Fall 2009 10

Impact of randomness – non-uniform
coverage

1
2
3
4
5
6 C

ov
er

ag
e

Contig

Reads

Imagine raindrops on a sidewalk

CMSC423 Fall 2009 11

Lander-Waterman statistics

L = read length
T = minimum overlap
G = genome size
N = number of reads
c = coverage (NL / G)
σ = 1 – T/L

E(#islands) = Ne-cσ
E(island size) = L(ecσ – 1) / c + 1 – σ
contig = island with 2 or more reads

See chapter 4.5

CMSC423 Fall 2009 12

All pairs alignment
• Needed by the assembler
• Try all pairs – must consider ~ n2 pairs
• Smarter solution: only n x coverage (e.g. 8) pairs are possible

– Build a table of k-mers contained in sequences (single pass through
the genome)

– Generate the pairs from k-mer table (single pass through k-mer table)

k-mer

A

B

C

D H
I

F

G
E

CMSC423 Fall 2009 13

Additional pairwise-alignment details
• 4 types of overlaps
• Often – assume first read is “forward”

• Representing the alignment

• Why not store length of overlap?

Normal

Innie

Outie

Anti-normal

A-hang B-hang

CMSC423 Fall 2009 14

Brief aside (assembly paradigms)
● Greedy algorithm

● easy to implement
● relatively efficient
● but... can make mistakes because it is greedy (only

takes into account local information)
● How can you "reason" about repeats?
● Graph theory can help: 2 paradigms

● Overlap-Layout-Consenusus: nodes=reads, edges=
reads overlap

● deBruijn/repeat graph: nodes = k-mers, edges = k+1-
mers (extracted from the reads).

● Both translate into: find a constrained path within a
graph

CMSC423 Fall 2009 15

Overlap-layout-consensus
Main entity: read
Relationship between reads: overlap

3 Stages: overlap (btwn reads) + layout (find placement of reads
wrt each other) + consensus (multiple alignment of reads)

1
2

3

4
5

6

7
8

9

1 2 3 4 5 6 7 8 9

1 2 3

1 2 3

1 2 3 1
2

3

1 3

2

1
3

2

ACCTGA
ACCTGA
AGCTGA
ACCAGA

CMSC423 Fall 2009 16

Paths through graphs and assembly
• Hamiltonian circuit: visit each node (city) exactly

once, returning to the start
• I.e. use every read in the genome exactly once

A

B D C

E

H
G

I

F

A

B

C

D H
I

F

G
E

Genome

CMSC423 Fall 2009 17

Aside: graph traversals
● Hamiltonian path: visit every single node of a graph

EXACTLY once (NP-hard)
● Eulerian path: visit every edge of a graph EXACTLY

once (polynomial time)
● Chinese Postman: find the shortest path in a graph

that visits all the edges (i.e. Eulerian path where you
allow a minimum number of edges to be reused)

● Note: a Hamiltonian path or an Eulerian path are not
guaranteed to exist. A Chinese postman path can
always be constructed

CMSC423 Fall 2009 18

Sequencing by hybridization

AAAA
AAAC
AAAG
AAAT
AACA
AACG
AACT
AAGA
...

probes - all possible k-mers

AACAGTAGCTAGATG
AACA TAGC AGAT
 ACAG AGCT GATG
 CAGT GCTA
 AGTA CTAG
 GTAG TAGA

CMSC423 Fall 2009 19

Assembling SBH data

Main entity: oligomer (overlap)
Relationship between oligomers: adjacency

ACCTGATGCCAATTGCACT...

CTGAT follows CCTGA (they share 4 nucleotides: CTGA)

Problem: given all the k-mers, find the original string

In assembly: fake the SBH experiment - break the reads into k-mers

CMSC423 Fall 2009 20

Eulerian circuit

● Eulerian circuit: visit each edge (bridge) exactly once
and come back to the start

● an edge (roughly) corresponds to a read

ACCTAGATTGAGGTCG

CCTAGATTGAGGTCGACCTAGATTGAGGTC

CMSC423 Fall 2009 21

deBruijn graph
• Nodes – set of k-mers obtained from the reads
• Edges – link k-mers that overlap by k-1 letters
ACCAGTGCA

 CCAGTGCAT

• This formulation particularly useful for very short reads
• Solution – Eulerian path (actually Chinese postman)

through the graph
• Note – multiple Eulerian paths possible (exponential

number) due to repeats

CMSC423 Fall 2009 22

de Bruijn Graph Assembly

the age of foolishness

It was the best

best of times, it

was the best of

the best of times,

of times, it was

times, it was the

it was the worst

was the worst of

worst of times, it

the worst of times,

it was the age

was the age of
the age of wisdom,

age of wisdom, it

of wisdom, it was

wisdom, it was the

CMSC423 Fall 2009 23

deBruijn graph of Mycoplasma genitalium

CMSC423 Fall 2009 24

Assembly...parting thoughts
● The basic idea of both OLC and deBruijn approaches:

identify sections of DNA that MUST be present in the
actual genome:
● OLC – each read must be used because it is a piece of

the original genome
● deBruijn – each edge must be used because the DNA

string corresponding to it is a piece of the original
genome

CMSC423 Fall 2009 25

Assembly... recap
● Greedy algorithm... pretty good but gets stuck at

repeats
● Overlap layout consensus – equivalent to Hamiltonian

path (NP-hard)
● deBruijn graph – equivalent to Eulerian path

(polynomial time)
● ... BUT – exponential # of Eulerian paths consistent

with reads (because of repeats)
● Ultimately... still NP-hard

CMSC423 Fall 2009 26

Read-length vs. genome complexity

CMSC423 Fall 2009 27

In practice: graph simplifications

C

BA r

Dr

C

BA

r

D

Thread Reads

B
A r

C

Br

Cr

A

Split Half Decision

BC

B’
A

BCA

Remove Tips

B

B’
A C

B*A C

Pop Bubbles

BA

AB

Collapse paths

F

C

B E

A

D

ABCDEFDA

Collapse trees of cycles

Thm: a graph has a unique
Eulerian path if and only if
its cycle graph is a tree.

Defn: cycle graph – each node is
 a cycle in the original graph,
nodes are connected by an edge
if the corresponding cycles
intersect.

CMSC423 Fall 2009 28

AMOS quick tour
● amos.sourceforge.net
● Basic workflow:

● sequences are converted into the AMOS format (.afg)
● an .afg file is loaded into a flat-file database (the

"bank")
● all programs interact through the bank

reads
inserts

overlaps
contigs

scaffolds
etc.

scaffolder

viewer

overlapper

error
corrector

contigger
etc.

...

CMSC423 Fall 2009 29

An AMOS pipeline
#!runAmos -C
#--------------------------------------- USER DEFINED VALUES ------------------#
allow input to be either <file>.afg or just <file>
REF = $(PREFIX).1con
TGT = $(strip .afg PREFIX).afg
#--#
BINDIR = /usr/local/bin
NUCMER = $(shell which nucmer)
SEQS = $(PREFIX).seq
BANK = $(PREFIX).bank
ALIGN = $(PREFIX).delta
LAYOUT = $(PREFIX).layout
CONFLICT = $(PREFIX).conflict
CONTIG = $(PREFIX).contig
FASTA = $(PREFIX).fasta
INPUTS = $(TGT) $(REF)
OUTPUTS = $(CONTIG) $(FASTA)

Building AMOS bank
10: $(BINDIR)/bank-transact -c -z -b $(BANK) -m $(TGT)
Collecting clear range sequences
20: $(BINDIR)/dumpreads $(BANK) > $(SEQS)
Running nucmer
30: $(NUCMER) --maxmatch --prefix=$(PREFIX) $(REF) $(SEQS)
Running layout
40: $(BINDIR)/layout-align -U $(LAYOUT) -C $(CONFLICT) -b $(BANK) $(ALIGN)
Running consensus
50: $(BINDIR)/make-consensus -B -b $(BANK)
Outputting contigs
60: $(BINDIR)/bank2contig $(BANK) > $(CONTIG)
Converting to FastA file
70: $(BINDIR)/ctg2fasta < $(CONTIG) > $(FASTA)

CMSC423 Fall 2009 30

Project
● You will need to modify the Minimus pipeline to use

your own overlapper program (replacing the hash-
overlap command with your own)

● Part of the project is figuring out how to do this (using
the AMOS documentation)

AMOS interchange format

{RED
act:A
iid:1
eid:nihaf5_10_a01.ab1
seq:
gggaattgctcgtttctggagccccgccagcgtctgcgctccgcctgtgcgcacagaaga
gaggtgtgagtaaagacagtgctgagtaccggcagaggagagagagaaacaacatcgccg
tcaggaagagtcgagataaagcgcggcgccgcatccagatgacccagcagagggcgctgc
agctgcaggatgagaatcaccggctgcaggtgcacatccagcgcctgctgcacgaggtgg
aggcgctcaggcattacctgtcccagcgtcacctgcaggacacatctgaggagcactgat
gagaatacacctggagaacacacacctgaagaaaaa
.
qlt:
7777777777777<?IMKD@988<?@C>>>HQQQUUUUXZhhhhhhhh[cXXXUUUUZZ_
ZUUUUUUXXXZZUSOPPSSZhhhhZZZXX]]ZZ\\\\\\h_hhhZZZ^^\ZZZUUU\\h\
h\\\\bbbbhh\\ZZZ[^Zhhhhhhhbbb_bbbb\\bZ[Z[^\hbbbbbhbhhhhhbh
hbbhhhZXXXXXZZZ[[ZZbbhhhhhbbbhhc[\ZZZb\ZZbbh\\\bbbb__\\\\\\h
\\hhhhhh_____\\hhhhhhhhhhhh[ZZZZZhhZXXXXXZ\\hhhhhhh[[ZXXXZZ
ZZZZZZZZZZhhZZZZZhhhhZUSSQOUULLAD998
.
frg:0
clr:14,333
}

Based on Celera message format

3-letter object tag (RED= read)
single-line attribute (action: ADD)

internal identifier (int32)
external identifier

multi-line attribute

CMSC423 Fall 2009 32

Basic flow...
● Start with an AMOS .afg file (I will provide one)
● Load it in the bank

● bank-transact -cf -b mybank.bnk -m myfile.afg
● Dump the reads back out in a multi-fasta file

● dumpreads mybank.bnk > myfile.fa
● why? the IDs are now the internal IDs within the bank

● Use your program to compute overlaps (output an afg
file)
● myoverlapper myfile.fa > myoverlaps.afg

● Load the new overlaps in the bank
● bank-transact -b mybank.bnk -m myoverlaps.afg

● Continue with standard Minimus pipeline

CMSC423 Fall 2009 33

Overlap format
{OVL
adj:N
rds:159,161
scr:0
ahg:-32
bhg:0
}
{OVL
adj:N
rds:159,162
scr:0
ahg:-17
bhg:43
}
{OVL
adj:I
rds:159,163
scr:0
ahg:362
bhg:560
}

adj – "Normal", "Innie"
rds: iid1, iid2
ahg, bhg – ahang, bhang

A(159)
B (161)

-32 0

A (159)
B (162)

-17 43

A (159)
B (163)

362 560

Note: output is "redundant"
both A ovl B and B ovl A
are reported

