
CMSC423: Bioinformatic 
Algorithms, Databases and Tools

Genome assembly
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Reading assignment
• http://www.cbcb.umd.edu/research/assembly_primer.shtml
• Chapter 4.5 – coverage statistics
• Chapter 8 – genome assembly
• http://amos.sourceforge.net
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Shotgun sequencing

shearing

sequencing

assembly
original DNA (hopefully)
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Overview of terms

Assembly

Scaffolding
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Assembly Glossary
● Read – small (50-2000bp) segment of DNA "read" by 

a sequencing instrument
● Mate-pair, paired ends – pair of reads whose distance 

from each other within the genome is approximately 
known

● Contig – contiguous segment of DNA reconstructed 
(unambiguously) from a set of reads

● Scaffold – group of contigs that can be ordered and 
oriented with respect to each other (usually with the 
help of mate-pair data)
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So...
● Sequencing technologies only "read" small chunks of 

DNA, yet genomes are substantially larger
● The shotgun sequencing approach generates many 

random fragments from the original DNA
● The task of the assembly program is to stitch together 

the many small pieces into a reconstruction of the 
genome

● Essentially..... a huge jigsaw puzzle

● Think: shred a collection of Harry Potter books at 
random then try to rebuild the original without any 
additional information.
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Shortest common superstring problem
Given a set of strings, Σ=(s1, ..., sn), determine the shortest string S
such that every si is a sub-string of S. 
NP-hard
approximations: 4, 3, 2.89, ... 

Greedy algorithm (4-approximation)

phrap, TIGR Assembler, CAP

...ACAGGACTGCACAGATTGATAG
        ACTGCACAGATTGATAGCTGA...
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Greedy algorithm details
Compute all pairwise overlaps
*Pick best (e.g. in terms of alignment score) overlap
Join corresponding reads
Repeat from * until no more joins possible

• How do you compute an overlap alignment?
• Hint: modify Smith-Waterman dynamic programming 

algorithm
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Repeats (where greedy fails)

AAAAAAAAAAAAAAAAAAAA
AAAAAA AAAAAA AAAAAA

AAAAAA AAAAAA
AAAAAA AAAAAA

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
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Impact of randomness – non-uniform 
coverage
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Lander-Waterman statistics

L = read length
T = minimum overlap
G = genome size
N = number of reads
c = coverage (NL / G)
σ = 1 – T/L

E(#islands) = Ne-cσ 
E(island size) = L(ecσ – 1) / c + 1 – σ
contig = island with 2 or more reads

See chapter 4.5
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All pairs alignment
• Needed by the assembler
• Try all pairs – must consider ~ n2 pairs
• Smarter solution: only n x coverage (e.g. 8) pairs are possible

– Build a table of k-mers contained in sequences (single pass through 
the genome)

– Generate the pairs from k-mer table (single pass through k-mer table)
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Additional pairwise-alignment details
• 4 types of overlaps
• Often – assume first read is “forward”

• Representing the alignment

• Why not store length of overlap?

Normal

Innie

Outie

Anti-normal

A-hang B-hang
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Brief aside (assembly paradigms)
● Greedy algorithm

● easy to implement
● relatively efficient
● but... can make mistakes because it is greedy (only 

takes into account local information)
● How can you "reason" about repeats?
● Graph theory can help: 2 paradigms

● Overlap-Layout-Consenusus: nodes=reads, edges= 
reads overlap

● deBruijn/repeat graph: nodes = k-mers, edges = k+1-
mers (extracted from the reads).

● Both translate into: find a constrained path within a 
graph
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Overlap-layout-consensus
Main entity: read
Relationship between reads: overlap

3 Stages: overlap (btwn reads) + layout (find placement of reads 
wrt each other) + consensus (multiple alignment of reads)
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Paths through graphs and assembly
• Hamiltonian circuit: visit each node (city) exactly 

once, returning to the start
• I.e. use every read in the genome exactly once
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Aside: graph traversals
● Hamiltonian path: visit every single node of a graph 

EXACTLY once (NP-hard)
● Eulerian path: visit every edge of a graph EXACTLY 

once (polynomial time)
● Chinese Postman: find the shortest path in a graph 

that visits all the edges (i.e. Eulerian path where you 
allow a minimum number of edges to be reused)

● Note: a Hamiltonian path or an Eulerian path are not 
guaranteed to exist.  A Chinese postman path can 
always be constructed
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Sequencing by hybridization

AAAA
AAAC
AAAG
AAAT
AACA
AACG
AACT
AAGA
...

probes - all possible k-mers

AACAGTAGCTAGATG
AACA TAGC AGAT
 ACAG AGCT GATG
  CAGT GCTA
   AGTA CTAG
    GTAG TAGA
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Assembling SBH data 

Main entity: oligomer (overlap)
Relationship between oligomers: adjacency

ACCTGATGCCAATTGCACT...

CTGAT follows CCTGA (they share 4 nucleotides: CTGA)

Problem: given all the k-mers, find the original string

In assembly: fake the SBH experiment - break the reads into k-mers
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Eulerian circuit

● Eulerian circuit: visit each edge (bridge) exactly once 
and come back to the start 

● an edge (roughly) corresponds to a read

ACCTAGATTGAGGTCG

CCTAGATTGAGGTCGACCTAGATTGAGGTC
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deBruijn graph
• Nodes – set of k-mers obtained from the reads
• Edges – link k-mers that overlap by k-1 letters
ACCAGTGCA

 CCAGTGCAT

• This formulation particularly useful for very short reads
• Solution – Eulerian path (actually Chinese postman) 

through the graph
• Note – multiple Eulerian paths possible (exponential 

number) due to repeats
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de Bruijn Graph Assembly
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deBruijn graph of Mycoplasma genitalium
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Assembly...parting thoughts
● The basic idea of both OLC and deBruijn approaches: 

identify sections of DNA that MUST be present in the 
actual genome:
● OLC – each read must be used because it is a piece of 

the original genome
● deBruijn – each edge must be used because the DNA 

string corresponding to it is a piece of the original 
genome
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Assembly... recap
● Greedy algorithm... pretty good but gets stuck at 

repeats
● Overlap layout consensus – equivalent to Hamiltonian 

path (NP-hard)
● deBruijn graph – equivalent to Eulerian path 

(polynomial time)
● ... BUT – exponential # of Eulerian paths consistent 

with reads (because of repeats)
● Ultimately... still NP-hard
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Read-length vs. genome complexity
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In practice: graph simplifications
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Collapse trees of cycles

Thm: a graph has a unique
Eulerian path if and only if
its cycle graph is a tree.

Defn: cycle graph – each node is 
 a cycle in the original graph, 
nodes are connected by an edge 
if the corresponding cycles 
intersect.
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AMOS quick tour
● amos.sourceforge.net
● Basic workflow:

● sequences are converted into the AMOS format (.afg)
● an .afg file is loaded into a flat-file database (the 

"bank")
● all programs interact through the bank

reads
inserts

overlaps
contigs

scaffolds
etc.

scaffolder

viewer

overlapper

error 
corrector

contigger
etc.

...
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An AMOS pipeline
#!runAmos -C
#--------------------------------------- USER DEFINED VALUES ------------------#
# allow input to be either <file>.afg or just <file>
REF = $(PREFIX).1con
TGT = $(strip .afg PREFIX).afg
#------------------------------------------------------------------------------#
BINDIR   = /usr/local/bin
NUCMER   = $(shell which nucmer)
SEQS     = $(PREFIX).seq
BANK     = $(PREFIX).bank
ALIGN    = $(PREFIX).delta
LAYOUT   = $(PREFIX).layout
CONFLICT = $(PREFIX).conflict
CONTIG   = $(PREFIX).contig
FASTA   = $(PREFIX).fasta
INPUTS   = $(TGT) $(REF)
OUTPUTS  = $(CONTIG) $(FASTA)

## Building AMOS bank
10: $(BINDIR)/bank-transact -c -z -b $(BANK) -m $(TGT)
## Collecting clear range sequences
20: $(BINDIR)/dumpreads $(BANK) > $(SEQS)
## Running nucmer
30: $(NUCMER) --maxmatch --prefix=$(PREFIX) $(REF) $(SEQS)
## Running layout
40: $(BINDIR)/layout-align -U $(LAYOUT) -C $(CONFLICT) -b $(BANK) $(ALIGN)
## Running consensus
50: $(BINDIR)/make-consensus -B -b $(BANK)
## Outputting contigs
60: $(BINDIR)/bank2contig $(BANK) > $(CONTIG)
## Converting to FastA file
70: $(BINDIR)/ctg2fasta < $(CONTIG) > $(FASTA)
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Project
● You will need to modify the Minimus pipeline to use 

your own overlapper program (replacing the hash-
overlap command with your own)

● Part of the project is figuring out how to do this (using 
the AMOS documentation)



 

AMOS interchange format

{RED
act:A
iid:1
eid:nihaf5_10_a01.ab1
seq:
gggaattgctcgtttctggagccccgccagcgtctgcgctccgcctgtgcgcacagaaga
gaggtgtgagtaaagacagtgctgagtaccggcagaggagagagagaaacaacatcgccg
tcaggaagagtcgagataaagcgcggcgccgcatccagatgacccagcagagggcgctgc
agctgcaggatgagaatcaccggctgcaggtgcacatccagcgcctgctgcacgaggtgg
aggcgctcaggcattacctgtcccagcgtcacctgcaggacacatctgaggagcactgat
gagaatacacctggagaacacacacctgaagaaaaa
.
qlt:
7777777777777<?IMKD@988<?@C>>>HQQQUUUUXZhhhhhhhh[cXXXUUUUZZ_
ZUUUUUUXXXZZUSOPPSSZhhhhZZZXX]]ZZ\\\\\\h_hhhZZZ^^\ZZZUUU\\h\
h\\\\bbbbhh\\ZZZ[^Zhhhhhhhbbb\\_bbbb\\bZ[Z[^\hbbbbbhbhhhhhbh
hbbhhhZXXXXXZZZ[[ZZbbhhhhhbbbhhc[\ZZZb\ZZbbh\\\bbbb__\\\\\\h
\\hhhhhh\_____\\hhhhhhhhhhhh[ZZZZZhhZXXXXXZ\\hhhhhhh[[ZXXXZZ
ZZZZZZZZZZhhZZZZZhhhhZUSSQOUULLAD998
.
frg:0
clr:14,333
}

Based on Celera message format

3-letter object tag (RED= read)
single-line attribute (action: ADD)

internal identifier (int32)
external identifier

multi-line attribute
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Basic flow...
● Start with an AMOS .afg file (I will provide one)
● Load it in the bank

● bank-transact -cf -b mybank.bnk -m myfile.afg
● Dump the reads back out in a multi-fasta file

● dumpreads mybank.bnk > myfile.fa
● why? the IDs are now the internal IDs within the bank

● Use your program to compute overlaps (output an afg 
file)
● myoverlapper myfile.fa > myoverlaps.afg

● Load the new overlaps in the bank
● bank-transact -b mybank.bnk -m myoverlaps.afg

● Continue with standard Minimus pipeline
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Overlap format
{OVL
adj:N
rds:159,161
scr:0
ahg:-32
bhg:0
}
{OVL
adj:N
rds:159,162
scr:0
ahg:-17
bhg:43
}
{OVL
adj:I
rds:159,163
scr:0
ahg:362
bhg:560
}

adj – "Normal", "Innie"
rds: iid1, iid2
ahg, bhg – ahang, bhang

A(159)
B (161)

-32 0

A (159)
B (162)

-17 43

A (159)
B (163)

362 560

Note: output is "redundant"
both A ovl B and B ovl A
are reported


