CMSC423: Bioinformatic
Algorithms, Databases and Tools

Genome assembly

Reading assignment

http://www.cbcb.umd.edu/research/assembly primer.shtml
Chapter 4.5 — coverage statistics

Chapter 8 — genome assembly
http://amos.sourceforge.net

CMSC423 Fall 2009 2

Shotgun sequencing

sequencing

original DNA (hopefully)

assembly

<—

CMSC423 Fall 2009 3

verview of terms

Original DNA C

fragments _‘\‘\
SCCIanced Q:/ o
contig 1 contig 2
e - — — Assembly
fragments A N —

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT

contig 1 contig 2

CONsSensus [

Scaffolding s | == —

CMSC423 Fall 2009

Assembly Glossary

 Read — small (50-2000bp) segment of DNA "read" by
a sequencing instrument

« Mate-pair, paired ends — pair of reads whose distance
from each other within the genome is approximately
Known

e Contig — contiguous segment of DNA reconstructed
(unambiguously) from a set of reads

« Scaffold — group of contigs that can be ordered and
oriented with respect to each other (usually with the
help of mate-pair data)

CMSC423 Fall 2009 5

So...

e Sequencing technologies only "read" small chunks of
DNA, yet genomes are substantially larger

 The shotgun sequencing approach generates many
random fragments from the original DNA

* The task of the assembly program is to stitch together
the many small pieces into a reconstruction of the
genome

« Essentially..... a huge jigsaw puzzle

e Think: shred a collection of Harry Potter books at
random then try to rebuild the original without any
additional information.

CMSC423 Fall 2009 6

Shortest common superstring problem

Given a set of strings, 2=(s,, ..., s,), determine the shortest string S
such that every s. is a sub-string of S.

NP-hard .. .ACAGGACTGCACAGATTGATAG
approximations: 4, 3, 2.89, ... ACTGCACAGATTGATAGCTGA. . .

Greedy algorithm (4-approximation)

200
I I I O

1
1 ||||20|D|| L2
2

50 150

3 T . | A CTTT 1T

150 200 30 T T

AT T m |, T LTI 2T

phrap, TIGR Assembler, CAP

CMSC423 Fall 2009 7

Greedy algorithm details
Compute all pairwise overlaps
*Pick best (e.g. in terms of alignment score) overlap
Join corresponding reads
Repeat from * until no more joins possible

 How do you compute an overlap alignment?

Hint: modify Smith-Waterman dynamic programming
gorithm

Q)

CMSC423 Fall 2009 8

Repeats (where greedy fails)

AAAAAA

AAAAAA

AAAAAA

AAAAAA AAAAAA AAAAAA AADAALAA
AAAAAA AAAAAA AAAAAA
AAAAAA AAAAAA AAAAAA
AAAAAA

AAAAAA

CMSC423 Fall 2009 9

Impact of randomness — non-uniform
coverage

>

Coverage

Imagine raindrops on a sidewalk

CMSC423 Fall 2009 10

| ander-\Waterman statistics

L = read length

T = minimum overlap
G = genome size

N = number of reads

c = coverage (NL/ G)
o=1-T/L

E(#islands) = Ne
E(island size) =L(e«-1)/c+1-0
contig = island with 2 or more reads

See chapter 4.5

CMSC423 Fall 2009

eeeeeeee

11

All pairs alignment

 Needed by the assembler
« Try all pairs — must consider ~ n? pairs
« Smarter solution: only n x coverage (e.g. 8) pairs are possible

— Build a table of k-mers contained in sequences (single pass through
the genome)

— Generate the pairs from k-mer table (single pass through k-mer table)

A -Mmer
N\

CMSC423 Fall 2009 12

Additional pairwise-alignment details
* 4 types of overlaps
« Often — assume first read is “forward”

>

» Normal
- Innie
- . Outie
- Anti-normal

-

* Representing the alignment

| |
A-hang B-hang

* Why not store length of overlap?

CMSC423 Fall 2009 13

Brief aside (assembly paradigms)
* Greedy algorithm

» easy to implement
 relatively efficient

* but... can make mistakes because it is greedy (only
takes into account local information)

 How can you "reason” about repeats?

« Graph theory can help: 2 paradigms

* Overlap-Layout-Consenusus: nodes=reads, edges=
reads overlap

» deBruijn/repeat graph: nodes = k-mers, edges = k+1-
mers (extracted from the reads).

« Both translate into: find a constrained path within a

raph
CMSC423 Fall 2009 14

Overlap-layout-consensus

Main entity: read
Relationship between reads: overlap

3 Stages: overlap (btwn reads) + layout (find placement of reads
wrt each other) + consensus (multiple alignment of reads)

R —_ ACCTGA
1 2 3 LG S 2 AGCTGA
— — ACCAGA
1 o) 3 1 3 1 ;

CMSC423 Fall 2009 15

Paths through graphs and assembly

« Hamiltonian circuit: visit each node (city) exactly
once, returning to the start

* |.e. use every read in the genome exactly once

CMSC423 Fall 2009 16

Aside: graph traversals

e Hamiltonian path: visit every single node of a graph
EXACTLY once (NP-hard)

« Eulerian path: visit every edge of a graph EXACTLY
once (polynomial time)

e Chinese Postman: find the shortest path in a graph
that visits all the edges (i.e. Eulerian path where you
allow a minimum number of edges to be reused)

* Note: a Hamiltonian path or an Eulerian path are not
guaranteed to exist. A Chinese postman path can
always be constructed

CMSC423 Fall 2009 17

Sequencing by hybridization

sossseses AAAA

] A moememan
cessssses AAAG ACAG AGCT GATG
o000 O0OOOOO AAAT

000000 OGDOO CAGT GCTA
00000 O0COOOCGO AACA

seossees: AACG AGTA CTAG
o000 O0G0OOOOO GTAG TAGA
sesesseas AACT

.........\/AAGA

probes - all possible k-mers

CMSC423 Fall 2009

Assembling SBH data

Main entity: oligomer (overlap)
Relationship between oligomers: adjacency

ACCTGATGCCAATTGCACT...
H_/

CTGAT follows CCTGA (they share 4 nucleotides: CTGA)

Problem: given all the k-mers, find the original string

In assembly: fake the SBH experiment - break the reads into k-mers

CMSC423 Fall 2009 19

Eulerian circuit

- .
e

» Eulerian ciréuit: visit each edge (bridge) exactly once

and come back to the start

* an edge (roughly) corresponds to a read

ACCTAGATTGAGGTCG
/ \
ACCTAGATTGAGGTC |—CCTAGATTGAGGTCG
CMSC423 Fall 2009 20

deBruijn graph
 Nodes — set of k-mers obtained from the reads

» Edges — link k-mers that overlap by k-1 letters

ACCAGTGCA
CCAGTGCAT

* This formulation particularly useful for very short reads

» Solution — Eulerian path (actually Chinese postman)
through the graph

* Note — multiple Eulerian paths possible (exponential
number) due to repeats

CMSC423 Fall 2009 21

It was the best

M
was the best of
\A

de Bruijn Graph Assembly

the best of times, ’
\A
best of times, it

\x\‘/

of times, it was

AN

it was the worst

times, it was the

CMSC423 Fall 2009

71

\A

was the worst of

\L

the worst of times,

\)

worst of times, it

A it was the age

the age of foolishness

-
\A
was the age of
N

the age of wisdom,

\X
age of wisdom, it
N

of wisdom, it was

\X

wisdom, it was the

22

deBruijn graph of Mycoplasma genitalium

AAAGAAA
Y
’ 5 i
TTAT.CTAA" TACC, pr\ﬂ{'r

AGTG.TAAA

GAAA%\ AA Areme

ATAT ACAGY AT
jcyﬂ,/mm\ GGGT.GAAR _._ S
GTTG.CAAA
TAAC. TAS
S MTATCGC
TTCA AACT gl aala AAAG TTAA ACCA
ACCZ.CATT ATAG.TCAC
AATT. AACT\ j}l . TGeT, AAAC.AAGT \ CTACGCC
s cafe.acee v
GCTT.TTCA
| CATC AACG
ACCA.AGAA TGTG. ccc AGTG.AACG
GACPFACC. L s b ALT_
TTCAACTTC S
/ AAA.CAAC o / % GAAG.CCCA
St Lol GGGT.CCCC ST asr N A A0A : .
hS CGCTWTCA TICC.ATCC
TACT.GGTT \ a -
ATGG..3K8AC JoT6.6666 %
- CCCAA e s e
STAT.TTTT “AAC.TTCT TTT GTTG
GAAT.GGTT OTAT T \“ GLPA.TTAS - / ~a
» \ “ \ACAG..TC AGGT AGTC 1
TIAg TGAG.AGTG TCM__TCGG\ J
- {5 g
TTIIT r /A carGeaT CTAG.CGGR_JOAT
ANGA.TTTT - ..GGGG
#ac. CGCA.AAA f /
ARC.GGGA »
CCAA.GGAT

/ TGCG
AGT GEAG.AACC

CAAC.T. TCTT. AAAA TAGG. GGGG

CTTG..TAGT

cC. TCAALATCG ATCG

B> / /e
\

AATG.AGTC GCTA.CAGC AGCTTA
AGTA ACGG
CAAA.TGGA \ / Nerac asct
MGGA.CAGC CCAA.AACT

S\ e -

AUl TAAA
) TTTG.AATC /‘
TTTT.AGIC ~&rec T AP @oci oA .-
“a CTGATTTA 1epac CCA ' GrAGTA
- ree. 16 CGTG..GAG / \ /
4 >, GTTG. ACCA
AADY CAAG TCAA.GAAT
AA”IT GAAG TAdC e e GGGT.AGTA
CAAG.CAAG % - AGTC.ATGC fGraT.GTTA Na
. v l A
., GATG.AATC cTe
GGR T \ S CTGC.ATCA #TC.TGTG
'GGC aacd Tece GCTC.CTAC \ el \
ATAT.AGCT A CaAs '\ ec.1616
TCAA.GTTT » CATACTT AAGAs AT ancasc
AGTA.GITT #rac casc —-
TTeTAC . CCAGC AT
CAAG..AGCT
TIGL.TG
ARG.CCAA TCCATT
TGCA.GTTT GAGT.GAAT Lo ATAL
G CCAA ’ 'ﬁ A
TTTA.GAGC
AGAA.AACT
GGOG.TAAA TTAT.AAGG
/:/ V\ GTTG TCAA &
CCCA.CCAG ATCT. CCAG TYA.GTTG, ACCA
s) TTGG.GTTG
CAAC.ACCA

CMSC423 Fall 2009

[

TGCA.GTTT

GGOG.TAAA

/N

CCCA..CCAG

ATCT..CCAG

-

Assembly...parting thoughts

* The basic idea of both OLC and deBruijn approaches:
identify sections of DNA that MUST be present in the
actual genome:

« OLC - each read must be used because it is a piece of
the original genome

» deBruijn — each edge must be used because the DNA
string corresponding to it is a piece of the original
genome

CMSC423 Fall 2009 24

Assembly... recap

« Greedy algorithm... pretty good but gets stuck at
repeats

* Overlap layout consensus — equivalent to Hamiltonian
path (NP-hard)

e deBruijn graph — equivalent to Eulerian path
(polynomial time)

e ... BUT — exponential # of Eulerian paths consistent
with reads (because of repeats)

« Ultimately... still NP-hard

CMSC423 Fall 2009 25

Read-length vs. genome complexity

E 7] < Bacillus anthracis Ames
&0 Bacillus subtilis
o) + Mycoplasma genitalium
Mycoplasma synoviag 53
E] Chlamydia trachomatis & HAR-13
Hasmophiles influsnzas
Streptococcus pheumanias TIGR4
7] Lista riu_ manocytogansas
E 4 Escharnichia coli K12
2 E | Yarsinia pestis G002
I
1
ﬂ 3
1
l '.;:'H.
P B
T T T T T T
1) 200 400 800 B0 1000

CMSC423 Fall 2009 26

In practice: graph simplifications

Collapse paths Remove Tips Pop Bubbles Thread Reads Split Half Decision
B’ B’ A B B
[[—4 A (==

A B A = = r
/ A / W C Sa et - et

BC B C D C
A r B r B

= —> — S —
C r D r C

CMSC423 Fall 2009

Collapse trees of cycles

Ay

ABCDEFDA
— = —>

Thm: a graph has a unique
Eulerian path if and only if
its cycle graph is a tree.

Defn: cycle graph — each node is
a cycle in the original graph,
nodes are connected by an edge
if the corresponding cycles

intersect.

27

AMOS quick tour

e amos.sourceforge.net
« Basic workflow:

* sequences are converted into the AMOS format (.afg)

» an .afg file is loaded into a flat-file database (the
Ilbank")

 all programs interact through the ban

/\ scaffolder
overlapper

reads .
error inserts viewer

contigs
scaffolds

contigger \\\\\?Ei/////
etc.

CMSC423 Fall 2009 28

An AMOS pipeline

o —mm - USER DEFINED VALUES —---—-—-—-——————-—- #
allow input to be either <file>.afg or just <file>

REF = $ (PREFIX).lcon

TGT = $(strip .afg PREFIX) .afg

#!'runAmos -C

- #
BINDIR = /usr/local/bin
NUCMER = $(shell which nucmer)
SEQS S (PREFIX) .seq

BANK = S (PREFIX) .bank

ALIGN = $(PREFIX) .delta
LAYOUT = $(PREFIX).layout
CONFLICT = $(PREFIX).conflict
CONTIG $ (PREFIX) .contig
FASTA = $(PREFIX) .fasta

INPUTS = S (TGT) $ (REF)

OUTPUTS = $(CONTIG) $(FASTA)

Building AMOS bank
10: $(BINDIR) /bank-transact -c -z -b $(BANK) -m $ (TGT)

Collecting clear range sequences
20: $(BINDIR) /dumpreads $ (BANK) > $(SEQS)

Running nucmer
30: $(NUCMER) --maxmatch —--prefix=$(PREFIX) $(REF) $(SEQS)

Running layout
40: $(BINDIR)/layout-align -U $(LAYOUT) -C $(CONFLICT) -b $(BANK) $ (ALIGN)

Running consensus
50: $(BINDIR)/make-consensus -B -b $(BANK)

Outputting contigs
60: $(BINDIR)/bank2contig $(BANK) > $(CONTIG)

Converting to FastA file
70: $(BINDIR)/ctg2fasta < $(CONTIG) > $(FASTA)

CMSC423 Fall 2009 29

Project

e You will need to modify the Minimus pipeline to use

your own overlapper program (replacing the hash-
overlap command with your own)

« Part of the project is figuring out how to do this (using
the AMOS documentation)

CMSC423 Fall 2009 30

AMOS interchange format

Based on Celera message format

3-letter object tag (RED= read)
(eb single-line attribute (action: ADD)

act:A

i1 4 internal identifier (int32)
eid:nihaf5 10 all.abl -@—— external Identlfler

seq:
gggaattgctcgtttctggagcccecgeccagegtctgegecteccgectgtgegcacagaaga
gaggtgtgagtaaagacagtgctgagtaccggcagaggagagagagaaacaacatcgceccg
tcaggaagagtcgagataaagcgcggcgccgcatccagatgacccagcagagggcgcectge
agctgcaggatgagaatcaccggctgcaggtgcacatccagcgcctgectgcacgaggtgg ‘\
aggcgctcaggcattacctgtcccagcgtcacctgcaggacacatctgaggagcactgat

gagaatacacctggagaacacacacctgaagaaaaa mu It"l | ne attn bute

glt:
7777777777777<?IMKDR988<?@C>>>HQQQUUUUXZhhhhhhhh [cXXXUUUUZZ
ZUUUUUUXXXZZUSOPPSSZhhhhZZZXX]] ZZ\\\\\\h_hhhZzZZ""\ZZZUUU\\h\
n\\\\bbbbhh\\ZZZ [~ Zhhhhhhhbbb\\ bbbb\\bZ [Z [*\hbbbbbhbhhhhhbh
hbbhhhZXXXXXZZZ [[2Zbbhhhhhbbbhhc [\Z2Z2b\ZZbbh\\\bbbb__\\\\\\h
\\hhhhhh\ _\\hhhhhhhhhhhh[ZZZZZhhZXXXXXZ\\hhhhhhh [[ZXXXZZ
2222222222hhZ22Z2Z2hhhhZUSSQOUULLAD998

frg:0
clr:14,333
}

Basic flow...
« Start with an AMOS .afg file (I will provide one)
 Load it in the bank
* bank-transact -cf -b mybank.bnk -m myfile.afg
 Dump the reads back out in a multi-fasta file
» dumpreads mybank.bnk > myfile.fa
 why? the IDs are now the internal IDs within the bank

« Use your program to compute overlaps (output an afg
file)

* myoverlapper myfile.fa > myoverlaps.afg
« Load the new overlaps in the bank
* bank-transact -b mybank.bnk -m myoverlaps.afg

« Continue with standard Minimus pipeline
CMSCA23 Fall 2009 32

Overlap format
{OVL

adj:N adj — "Normal", "Innie" 52, A(159)
rds:159,161 rds: iid1, iid2 B (161)
scr:0 ahg, bhg —ahang, bhang

ahg:-32

bhg:0

}

{O_VL Note: output is "redundant” 17 Y
adj:N both AoviBandBoviIA ~ ' A(159) , *°
rds:159,162 are reported B(162)
scr:0 T | 1
ahg:-17

bhg:43

}

{OVL

adj:l 362 A(159) _ 560
rds:159,163 B (163) |

scr:0
ahg:362
bhg:560
}

CMSC423 Fall 2009 33

