CMSC423: Bioinformatic
Algorithms, Databases and Tools

Genome assembly



Reading assignment

http://www.cbcb.umd.edu/research/assembly primer.shtml
Chapter 4.5 — coverage statistics

Chapter 8 — genome assembly
http://amos.sourceforge.net
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Shotgun sequencing

sequencing

original DNA (hopefully)

assembly

<—
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verview of terms

Original DNA C

fragments _‘\‘\
SCCIanced Q:/ o
contig 1 contig 2
e - — — Assembly
fragments A N —

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT

contig 1 contig 2

CONsSensus [

Scaffolding s | == —
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Assembly Glossary

 Read — small (50-2000bp) segment of DNA "read" by
a sequencing instrument

« Mate-pair, paired ends — pair of reads whose distance
from each other within the genome is approximately
Known

e Contig — contiguous segment of DNA reconstructed
(unambiguously) from a set of reads

« Scaffold — group of contigs that can be ordered and
oriented with respect to each other (usually with the
help of mate-pair data)
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So...

e Sequencing technologies only "read" small chunks of
DNA, yet genomes are substantially larger

 The shotgun sequencing approach generates many
random fragments from the original DNA

* The task of the assembly program is to stitch together
the many small pieces into a reconstruction of the
genome

« Essentially..... a huge jigsaw puzzle

e Think: shred a collection of Harry Potter books at
random then try to rebuild the original without any
additional information.
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Shortest common superstring problem

Given a set of strings, 2=(s,, ..., s, ), determine the shortest string S
such that every s. is a sub-string of S.

NP-hard .. .ACAGGACTGCACAGATTGATAG
approximations: 4, 3, 2.89, ... ACTGCACAGATTGATAGCTGA. . .

Greedy algorithm (4-approximation)
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phrap, TIGR Assembler, CAP
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Greedy algorithm details
Compute all pairwise overlaps
*Pick best (e.g. in terms of alignment score) overlap
Join corresponding reads
Repeat from * until no more joins possible

 How do you compute an overlap alignment?

Hint: modify Smith-Waterman dynamic programming
gorithm

Q)
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Repeats (where greedy fails)

AAAAAA

AAAAAA

AAAAAA

AAAAAA AAAAAA AAAAAA AADAALAA
AAAAAA AAAAAA AAAAAA
AAAAAA AAAAAA AAAAAA
AAAAAA

AAAAAA
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Impact of randomness — non-uniform
coverage

>

Coverage

Imagine raindrops on a sidewalk
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| ander-\Waterman statistics

L = read length

T = minimum overlap
G = genome size

N = number of reads

c = coverage (NL/ G)
o=1-T/L

E(#islands) = Ne
E(island size) =L(e«-1)/c+1-0
contig = island with 2 or more reads

See chapter 4.5
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All pairs alignment

 Needed by the assembler
« Try all pairs — must consider ~ n? pairs
« Smarter solution: only n x coverage (e.g. 8) pairs are possible

— Build a table of k-mers contained in sequences (single pass through
the genome)

— Generate the pairs from k-mer table (single pass through k-mer table)

A -Mmer
N\
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Additional pairwise-alignment details
* 4 types of overlaps
« Often — assume first read is “forward”

>

» Normal
- Innie
- . Outie
- Anti-normal

-

* Representing the alignment

| |
A-hang B-hang

* Why not store length of overlap?
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Brief aside (assembly paradigms)
* Greedy algorithm

» easy to implement
 relatively efficient

* but... can make mistakes because it is greedy (only
takes into account local information)

 How can you "reason” about repeats?

« Graph theory can help: 2 paradigms

* Overlap-Layout-Consenusus: nodes=reads, edges=
reads overlap

» deBruijn/repeat graph: nodes = k-mers, edges = k+1-
mers (extracted from the reads).

« Both translate into: find a constrained path within a

raph
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Overlap-layout-consensus

Main entity: read
Relationship between reads: overlap

3 Stages: overlap (btwn reads) + layout (find placement of reads
wrt each other) + consensus (multiple alignment of reads)

R —_ ACCTGA
1 2 3 LG S 2 AGCTGA
— — ACCAGA
1 o) 3 1 3 1 ;
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Paths through graphs and assembly

« Hamiltonian circuit: visit each node (city) exactly
once, returning to the start

* |.e. use every read in the genome exactly once
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Aside: graph traversals

e Hamiltonian path: visit every single node of a graph
EXACTLY once (NP-hard)

« Eulerian path: visit every edge of a graph EXACTLY
once (polynomial time)

e Chinese Postman: find the shortest path in a graph
that visits all the edges (i.e. Eulerian path where you
allow a minimum number of edges to be reused)

* Note: a Hamiltonian path or an Eulerian path are not
guaranteed to exist. A Chinese postman path can
always be constructed
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Sequencing by hybridization

sossseses AAAA

] A moememan
cessssses AAAG ACAG AGCT GATG
o000 O0OOOOO AAAT

000000 OGDOO CAGT GCTA
00000 O0COOOCGO AACA

seossees: AACG AGTA CTAG
o000 O0G0OOOOO GTAG TAGA
sesesseas AACT

.........\/AAGA

probes - all possible k-mers
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Assembling SBH data

Main entity: oligomer (overlap)
Relationship between oligomers: adjacency

ACCTGATGCCAATTGCACT...
H_/

CTGAT follows CCTGA (they share 4 nucleotides: CTGA)

Problem: given all the k-mers, find the original string

In assembly: fake the SBH experiment - break the reads into k-mers
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Eulerian circuit

- .
e

» Eulerian ciréuit: visit each edge (bridge) exactly once

and come back to the start

* an edge (roughly) corresponds to a read

ACCTAGATTGAGGTCG
/ \
ACCTAGATTGAGGTC |—CCTAGATTGAGGTCG
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deBruijn graph
 Nodes — set of k-mers obtained from the reads

» Edges — link k-mers that overlap by k-1 letters

ACCAGTGCA
CCAGTGCAT

* This formulation particularly useful for very short reads

» Solution — Eulerian path (actually Chinese postman)
through the graph

* Note — multiple Eulerian paths possible (exponential
number) due to repeats
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It was the best

M
was the best of
\A

de Bruijn Graph Assembly

the best of times, ’
\A
best of times, it

\x\‘/

of times, it was

AN

it was the worst

times, it was the
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the worst of times,
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worst of times, it

A it was the age

the age of foolishness

-
\A
was the age of
N

the age of wisdom,

\X
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N

of wisdom, it was
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wisdom, it was the
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deBruijn graph of Mycoplasma genitalium
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Assembly...parting thoughts

* The basic idea of both OLC and deBruijn approaches:
identify sections of DNA that MUST be present in the
actual genome:

« OLC - each read must be used because it is a piece of
the original genome

» deBruijn — each edge must be used because the DNA
string corresponding to it is a piece of the original
genome
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Assembly... recap

« Greedy algorithm... pretty good but gets stuck at
repeats

* Overlap layout consensus — equivalent to Hamiltonian
path (NP-hard)

e deBruijn graph — equivalent to Eulerian path
(polynomial time)

e ... BUT — exponential # of Eulerian paths consistent
with reads (because of repeats)

« Ultimately... still NP-hard
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Read-length vs. genome complexity
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In practice: graph simplifications

Collapse paths Remove Tips Pop Bubbles Thread Reads Split Half Decision
B’ B’ A B B
[ [ —4 A (==

A B A = = r
/ A / W C Sa et - et

BC B C D C
A r B r B

= —> — S —
C r D r C
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Collapse trees of cycles

Ay

ABCDEFDA
— = —>

Thm: a graph has a unique
Eulerian path if and only if
its cycle graph is a tree.

Defn: cycle graph — each node is
a cycle in the original graph,
nodes are connected by an edge
if the corresponding cycles

intersect.
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AMOS quick tour

e amos.sourceforge.net
« Basic workflow:

* sequences are converted into the AMOS format (.afg)

» an .afg file is loaded into a flat-file database (the
Ilbank")

 all programs interact through the ban

/\ scaffolder
overlapper

reads .
error inserts viewer

contigs
scaffolds

contigger \\\\\?Ei/////
etc.
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An AMOS pipeline

o —mm - USER DEFINED VALUES —---—-—-—-——————-—- #
# allow input to be either <file>.afg or just <file>

REF = $ (PREFIX).lcon

TGT = $(strip .afg PREFIX) .afg

#!'runAmos -C

- #
BINDIR = /usr/local/bin
NUCMER = $(shell which nucmer)
SEQS S (PREFIX) .seq

BANK = S (PREFIX) .bank

ALIGN = $(PREFIX) .delta
LAYOUT = $(PREFIX).layout
CONFLICT = $(PREFIX).conflict
CONTIG $ (PREFIX) .contig
FASTA = $(PREFIX) .fasta

INPUTS = S (TGT) $ (REF)

OUTPUTS = $(CONTIG) $(FASTA)

## Building AMOS bank
10: $(BINDIR) /bank-transact -c -z -b $(BANK) -m $ (TGT)

## Collecting clear range sequences
20: $(BINDIR) /dumpreads $ (BANK) > $(SEQS)

## Running nucmer
30: $(NUCMER) --maxmatch —--prefix=$(PREFIX) $(REF) $(SEQS)

## Running layout
40: $(BINDIR)/layout-align -U $(LAYOUT) -C $(CONFLICT) -b $(BANK) $ (ALIGN)

## Running consensus
50: $(BINDIR)/make-consensus -B -b $(BANK)

## Outputting contigs
60: $(BINDIR)/bank2contig $(BANK) > $(CONTIG)

## Converting to FastA file
70: $(BINDIR)/ctg2fasta < $(CONTIG) > $(FASTA)
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Project

e You will need to modify the Minimus pipeline to use

your own overlapper program (replacing the hash-
overlap command with your own)

« Part of the project is figuring out how to do this (using
the AMOS documentation)
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AMOS interchange format

Based on Celera message format

3-letter object tag (RED= read)
(eb single-line attribute (action: ADD)

act:A

i1 4 internal identifier (int32)
eid:nihaf5 10 all.abl -@—— external Identlfler

seq:
gggaattgctcgtttctggagcccecgeccagegtctgegecteccgectgtgegcacagaaga
gaggtgtgagtaaagacagtgctgagtaccggcagaggagagagagaaacaacatcgceccg
tcaggaagagtcgagataaagcgcggcgccgcatccagatgacccagcagagggcgcectge
agctgcaggatgagaatcaccggctgcaggtgcacatccagcgcctgectgcacgaggtgg ‘\
aggcgctcaggcattacctgtcccagcgtcacctgcaggacacatctgaggagcactgat

gagaatacacctggagaacacacacctgaagaaaaa mu It"l | ne attn bute

glt:
7777777777777<?IMKDR988<?@C>>>HQQQUUUUXZhhhhhhhh [cXXXUUUUZZ
ZUUUUUUXXXZZUSOPPSSZhhhhZZZXX] ] ZZ\\\\\\h_hhhZzZZ""\ZZZUUU\\h\
n\\\\bbbbhh\\ZZZ [~ Zhhhhhhhbbb\\ bbbb\\bZ [Z [*\hbbbbbhbhhhhhbh
hbbhhhZXXXXXZZZ [ [2Zbbhhhhhbbbhhc [\Z2Z2b\ZZbbh\\\bbbb__\\\\\\h
\\hhhhhh\ _\\hhhhhhhhhhhh[ZZZZZhhZXXXXXZ\\hhhhhhh [ [ZXXXZZ
2222222222hhZ22Z2Z2hhhhZUSSQOUULLAD998

frg:0
clr:14,333
}



Basic flow...
« Start with an AMOS .afg file (I will provide one)
 Load it in the bank
* bank-transact -cf -b mybank.bnk -m myfile.afg
 Dump the reads back out in a multi-fasta file
» dumpreads mybank.bnk > myfile.fa
 why? the IDs are now the internal IDs within the bank

« Use your program to compute overlaps (output an afg
file)

* myoverlapper myfile.fa > myoverlaps.afg
« Load the new overlaps in the bank
* bank-transact -b mybank.bnk -m myoverlaps.afg

« Continue with standard Minimus pipeline
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Overlap format
{OVL

adj:N adj — "Normal", "Innie" 52, A(159)
rds:159,161 rds: iid1, iid2 B (161)
scr:0 ahg, bhg —ahang, bhang

ahg:-32

bhg:0

}

{O_VL Note: output is "redundant” 17 Y
adj:N both AoviBandBoviIA  ~ ' A(159) , *°
rds:159,162 are reported B(162)
scr:0 T | 1
ahg:-17

bhg:43

}

{OVL

adj:l 362 A(159) _ 560
rds:159,163 B (163) |

scr:0
ahg:362
bhg:560
}
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