
CMSC423 - Midterm 10/7/2008

Name __

Honor Pledge

The University of Maryland Code of Academic Integrity requests that you write by hand
and sign the following statement pledging your commitment to academic integrity.
Please do so in the blank space below the text of the honor pledge.

I pledge on my honor that I have not given or received any unauthorized assistance on
this examination.

Signature __

Please write your name on all additional sheets of paper you use.

NOTE: Please budget your time carefully! You only have 75 minutes available for
this exam. There is a very good chance you will not be able to answer all the
questions in the allotted time (though it is definitely possible to do that).

1. (20 points) The basics!
a) Define the term "synonymous mutation"
b) What is the "central dogma" of molecular biology?
c) Reverse complement the following DNA string

ATGCGGGCAC GGAAGCCGTG TACGCGAGCG CGCTTGAGGG

d) Identify the longest open reading frame in the following DNA sequence and translate it
into an amino-acid sequence (note: translation table provided at the end of the exam)

TGCGTATGTATGTCAGACGGTGAGACGCTTGCGGGCTAAGCGACG

2. (20 points) Given the following string, construct a suffix tree, including the suffix
links.

GATATAGTAG

(Note: this will be messy - draw carefully. Also, no need to draw suffix links that point
to the root of the tree)

3. (20 points) Exact string matching.

a) The steps outlined below represent an execution of the KMP algorithm (text on top,
pattern on bottom)

(i) ABCABCDABABCDABDABDE (ii) ABCABCDABABCDABDABDE
 |||X ||||||X
 ABCDABD ABCDABD

(iii) ABCABCDABABCDABDABDE (iv) ABCABCDABABCDABDABDE
 X |||||||
 ABCDABD ABCDABD

In step (i), the pattern is matched until a mismatch occurs at the 4th character. Since no
suffix of the matched portion matches a prefix of the whole pattern (no prefix and suffix
of ABC match each other), the pattern is shifted beyond the aligned region and the
matching continues from the beginning of the pattern. In (ii) a mismatch is found at
position 7 in the pattern and the pattern is shifted (iii) so that the common prefix and
suffix of the matched regions are aligned (the first AB in the pattern is placed where the
second AB matched at step (ii)). The third position in the pattern is compared to the text
and results in a mismatch. The pattern is then shifted past this position and a match is
found.

Using this execution as an example, provide an argument why the overall running time of
the algorithm proportional to the sum of the lengths of pattern and text.

b) During the execution of the algorithm described in class for computing Z values, when
computing the value Z[i] we relied on the Z-value for a position j < i such that
 (i) Z[j] extends the farthest in the string (j + Z[j] is maximum over all choices of j < i)
and
 (ii) j + Z[j] > i

Would the algorithm still work efficiently (linear time) if only the second condition were
satisfied? Which part of the reasoning would fall apart?

Hint: this is related to part a) of this question.

4. (20 points) Remember that a suffix tree is a compressed representation of all suffixes
in a string, such that each suffix is represented by a different leaf in the tree. The least
common ancestor of two nodes in a tree is the lowest node shared by the paths from the
two nodes to the root. Assume n is the least common ancestor of leaves i and j in a suffix
tree for string S.

a. What does this node represent?
b. Describe an algorithm that will compute the Z values for S in O(n) time, using

the suffix tree assuming you are given function that allows you to compute the
least common ancestor of any two nodes in constant time.

Reminder: for any location i in S, Z[i] is the longest prefix of S[i..n] that matches a
prefix S.

5. (20 points) Suppose we have sequences v = v1, ... , vn and w = w1, ..., wm, where v is
longer than w. We wish to find a substring of v which best matches all of w. Global
alignment won’t work because it will try to align all of v. Local alignment won’t work
because it may not align all of w. The problem (called the fitting problem) can be
formulated as the problem of finding a substring v’ of v that maximizes the score of
alignment s(v’, w) among all substrings of v. Give an algorithm which computes the
optimal fitting alignment in O(nm) time. Describe both how to compute the score of this
alignment and how to compute the actual alignment.

Note: You don’t need to spell out all the details of the algorithm. When using traditional
dynamic programming approach, it is sufficient to specify the initial conditions (what
values are written in the first row/column of the matrix), where will the score for this best
alignment be located in the matrix, and whether you use the global alignment recurrence
in the algorithm (max value between left, diagonal, and above), or the local alignment
recurrence that allows the alignment to restart at any location by taking the maximum of
four values: 0 and the three values mentioned above.

6. (BONUS: 20 points). In class we discussed two approaches to sequence alignment -
global and local alignment. A global alignment requires the two sequences to be aligned
end-to-end while a local alignment allows one to ignore any mismatches occurring at the
end of the sequences. There is, however, a middle ground - the semiglobal alignment. In
a semi-global alignment all characters in the two sequences must be aligned, however
only gaps internal to the alignment are counted, while gaps at either end of the alignment
are "free".

For example, the following sequences aligned optimally using global alignment:

CAGCACTTGGATTCTCCGG
CAGC-----G-T-----GG

can be aligned optimally in a semiglobal fashion as follows:

CAGCA-CTTGGATTCTCGG
---CAGCGTGG--------

Describe a dynamic programming algorithm that computes the semiglobal alignment of
two strings in time O(mn). The note in problem 5 applies here as well.

Translation table

Ter - stop codon

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA * Ter
TTG L Leu TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA I Ile ACA T Thr AAA K Lys AGA R Arg
ATG M Met ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly

