
CMSC 423 Fall 2009: Project Specification

Introduction
The project will consist of four components due throughout the semester (see below for
timeline). Basic rules:

• You are allowed to work in teams of at most 2 people.

• The teams can change throughout the semester (i.e. you can work on part 1 with one of
your colleagues and on part 2 with another one if you wish). Please clearly indicate on
your submission who the members of the team are (both will get the same grade,
irrespective of contribution).

• You can use any programming language you wish.

• Your software must compile and run on the Glue machines so make sure that you test it
before submitting it. You can get at most 50% of the grade if we have difficulties
compiling or running your code.

• The projects must be submitted using the "submit" command on the Glue system. Note:
this is different from the "submit server". You must be logged onto glue.umd.edu or
linux.grace.umd.edu in order to run the "submit" command.

• Your code must be accompanied by a README file that explains the steps necessary to
compile and run your project.

• 10% of the grade for each component of the project will be awarded for "best
programming practices" - make sure your code is neat, well organized and thoroughly
commented.

Deliverables/Timeline
• FASTA parser.

Due: 9/17/09 Weight: 10 %

• Global alignment of two DNA sequences.
Due: 10/20/09 Weight: 10%

• Local alignment with affine gap penalties.
Due: 11/03/09 Weight: 30%

• Overlapper for assembly & incorporation into Minimus assembler.
Due: 12/3/09 Weight: 50%

Part 1 - FASTA parser
Due Thursday, September 17, 2009
Overall weight: 10% of total project grade
The first part of the project requires you to write code that can parse a FASTA file. For this part,
you are not allowed to use any of the Bio* libraries available for your programming language
of choice.

Specification: Your program should read in a FASTA file (sample is available on the Glue
system in /class/fall2009/cmsc/423/0101/public/test.fasta) and output a list of sequence
identifiers for all sequences that satisfy one of the following:

1. are less than 100 bp in length

2. contain at least one character that is not A,C,T, or G

Details:

• For clarifications on the FASTA format see the Wikipedia entry:
http://en.wikipedia.org/wiki/FASTA_format

• In addition, you can assume that a sequence identifier follows right after the ">" sign. If a
sequence doesn't follow this rule you can exit with an error.

• You can also assume that the identifier ends with the first "space" character (space, tab,
or end-of-line)

• Interface: Your program must accept the input fasta file either through the standard
input, or as the only command-line parameter. The output should be provided on
standard output.

• Any questions about this assignment should be sent to both myself and the TA.

Part 2. Global sequence alignment
Due: October 20, 2009

Overall weight: 10% of total project score

Specification: You must implement the dynamic programming algorithm described in class to
construct the global (end-to-end) alignment of two DNA sequences. Your program must accept
two DNA sequences in FASTA format and output a global alignment of these sequences in the
following format:
Edit distance = 7

Seq1 ATTC-TCAT--TAGGACCGGC
 || |||| ||| ||| ||

Seq2 -TTGATCATGGTAG-ACC-GC

Note: the vertical bars indicate characters that match between the two sequences.

If the sequences are too long to be displayed on one line (assume a line has 80 characters), the
alignment should wrap around as shown below:
Edit distance = 12

Seq1 ATTC-TCAT--TAGGACCGGC
 || |||| ||| ||| ||

Seq2 -TTGATCATGGTAG-ACC-GC

Seq1 GCACATCA-G-TAGGACC
 | | |||| | ||| |||

Seq2 GTAGATCATGGTAG-ACC

Interface: Your program should accept 5 parameters on the command line: the names of the
files containing the two sequences, and the scores for a match, mismatch, or gap in the
alignment. Below are two examples:

Simple: myProg file1.fa file2.fa 3 -1 -2 (parameters are simply listed in order)

With options:
myProg -s1 file1.fa -s2 file2.fa -match 3 -mismatch -1 -gap -2 (use
command-line options)

You can pick any option you wish, and even allow certain parameters to be missing (in which
case they would be assigned default values), however you must indicate in a README file how
to run your program (and what the default parameters are if they are not specified).

Additional details: Any questions about this assignment should be sent to both myself and
the TA.
You can assume that the two FASTA files contain exactly one sequence (or if they contain more
than one just use the first sequence in each file).

You can now use any of the Bio* libraries to read the FASTA files (but not to perform the
alignments).

Part 3. Local sequence alignment with affine gap scores
Due: November 3, 2009

Overall weight: 30% of total project score

Specification: Extend the program you wrote in Part 2 to achieve the following:

• Perform local alignment (find best matching substring)

• Accept alignment scores formatted as a BLOSUM matrix (detail below)

• Gap penalties are "affine" - the combination of a gap opening penalty (paid once per
group of gaps) plus a gap extension penalty (proportional to number of gaps within a
group).

Output format: The output of your program must follow the format shown below - note the
coordinates within the two strings of the aligned region, and that the '|' characters are replaced
by the actual letter that matches between the two strings. Just as before, if the strings are too
long to be printed on one line (assume one line is 80 characters) you will need to wrap the
alignment around on multiple lines.

Score = 188, Identities = 49/152 (32%), Gaps = 6/152 (3%)

seq1 23 LPKTRTKALLTALTLAAAAAAAPALADVEFRHAL---DDSALDLSPIKGEEITDAVKSFR 79
 P A A AL FRH D S G T AV F
seq2 3 MPSFNRSIAISATLAVGLLAPVVALGQEVFRHTVTGEDLKIMETSQPSGRD-TEAVRNFL 61

A sample output file is provided at http://www.cbcb.umd.edu/confcour/CMSC423-
materials/Output.txt

Interface: follow the same rules as for Part 2, except that you must now accept two new values -
gap opening and gap extension penalties - and a new file - the BLOSUM matrix specifying the
substitution/match scores.

BLOSUM matrices: A sample matrix is provided at
http://www.cbcb.umd.edu/confcour/CMSC423-materials/BLOSUM80.txt

Note: most of the Bio* libraries contain utilities for reading in BLOSUM matrices.

Additional details: Any questions about this assignment should be sent to both myself and the
TA.
You can assume that the two FASTA files contain exactly one sequence (or if they contain more
than one just use the first sequence in each file).

You can now use any of the Bio* libraries to read the FASTA files (but not to perform the
alignments).

http://www.cbcb.umd.edu/confcour/CMSC423-materials/Output.txt
http://www.cbcb.umd.edu/confcour/CMSC423-materials/Output.txt
http://www.cbcb.umd.edu/confcour/CMSC423-materials/BLOSUM80.txt

Part 4. Sequence overlapper for the Minimus assembler (AMOS package)
Due: December 3, 2009

Overall weight: 50% of total project score

Specification: You must write a program that reproduces the functionality of the hash-overlap
program from the AMOS package. Specifically, your program must extract a collection of
sequence reads from an AMOS bank, perform an all-v-all comparison between the sequences
using a local alignment algorithm with affine gap penalties, then load the overlaps found into
the AMOS bank.

In addition, you must integrate this program within the Minimus assembler, essentially
replacing the call for hash-overlap with a call for your program within the script running the
Minimus pipeline.

Your program must allow the user to specify the following parameters:

• minimum overlap length

• minimum % identity within the overlapping region

• alignment parameters (match, mismatch, and gap open, gap extension penalties)

• maximum region that can be ignored at the beginning/end of the aligned reads (i.e. how
far from the end of a read is the alignment allowed to start)

All these parameters must have default values that will be used in case the user does not
directly override the information. These values must be documented in a README file.

Documentation for the AMOS package can be found at http://amos.sourceforge.net.

You can use any Bio* utilities you find useful, including alignment routines.

You can (and should) use additional heuristics to ensure your program is efficient, e.g. use exact
alignment tricks to figure out which sequences might overlap before performing the expensive
inexact alignment operation.

Data sizes:

Expect that your program will have to assemble a data-set of ~ 100,000 sequences of length up
to 1,000 bp.

Contest:

The top performing programs will receive extra credit: The student who writes the fastest
program will receive a 20 point bonus. The next top 5 running times will receive a 10 point
bonus. Note: correctness of the program will also be tested - your program must produce a
reasonable assembly of the data-set in order to be considered for the speed competition.

http://amos.sourceforge.net/

