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 1 Introduction

This course covers a number of topics related to biological string alignment.  As you will see below, many 
biological objects can be seen as strings of letters, and string algorithms are one of the most important 
components of modern biological research.  Many of the ideas described here apply to any strings (web pages, 
books, computer programs, etc.), thus this class should be useful even if you are not interested in biology.  

It shouldn't be a surprise to find out that string processing algorithms have been around pretty much since 
computers were invented.  Many very smart scientists have tackled a vast number of problems related to the 
alignment and analysis of strings, and this course is just meant to give you a teaser of what you will encounter 
if you decide to delve deeper into the wonderful world of strings.  This course will also provide you with the 
basics of stringology, allowing you to understand the main concepts related to string analysis. 



 2 Quick introduction to biological sequences

Many biological objects can be interpreted as strings.  DNA, for example, is usually encoded as a string built 
from a 4-letter alphabet {A, C, T, G}, corresponding to the four nucleotides forming the DNA double-helix. 
Proteins can also be seen as strings build from a 20 letter alphabet, corresponding to the 20 different amino-
acids commonly used by living organisms.  This course will primarily focus on concepts related to the analysis 
of such biological strings.  First, we'll introduce the context within which these strings exist in life. This quick 
introduction to molecular biology is neither comprehensive, nor fully accurate, rather it is just meant to quickly
introduce you to some of the key terms in the field.  You should spend some time searching some of the terms 
on the internet, or reading various introductory textbooks (the Cartoon Guide to Genetics by Larry Gonick – 
ISBN 978-0062730992 – is a surprisingly good first read).

 2.1 The central dogma of molecular biology

The central dogma of molecular biology attempts to explain the flow of information in self-replicating 
biological systems.  In this model, genetic information is encoded in DNA.  A molecular process, called 
transcription, copies the genetic information into (nearly) identical RNA molecules, which are then converted 
into proteins through a process called translation.  Proteins are the biological objects that perform all the 
functions of the cell, including the actual transcription and translation processes, as well as the DNA 
replication function.  This general model can broadly accurately explain how living organisms operate, though
in recent years scientists have uncovered substantially more complex features of the mechanisms of life, such 
as the fact that genetic information can be transmitted not just through DNA alone but also through 
'annotations' along the DNA (e.g., methylation status) or even the way in which the DNA is physically 
organized within a cell.  

The terms transcription and translation are well ingrained in the vocabulary of biologists and are taught as 
part of Biology 101, thus, it may come as a surprise that these terms were actually proposed by John von 
Neumann, a pioneer of computer science.  Von Neumann proposed this two stage process, comprising a blind 
replication step followed by the interpretation/execution of the instructions, as a way to achieve self-replicating
automata.  It is remarkable that his intellectual predictions turned out to so closely model the actual operating 
principles of life.

 2.2 DNA and self-replication

The DNA has a particular structure that is essential for its role as a 'magnetic tape' storing our genetic 
information. Specifically, the DNA is a polymer, a molecule composed by the chaining of four different small 
molecules called nucleotides or bases.  These four nucleotides (adenine – A, guanine – G, cytosine – C, thymine –
T) can be chained in an arbitrary order along a sugar backbone, allowing the encoding of essentially arbitrary 
information.  The particular sequence is commonly represented by a string comprised of the first letters of the 
nucleotides (A, G, C, T).  Furthermore, most commonly, the chromosomes of organisms consist of two such 
chains (or strands) that are twisted around each other in a double-helix.  The two strands are held together by 
chemical bonds between 'complementary' nucleotides.  Specifically, the nucleotides fall into two classes: 
purines (A, G) and pyrimidines (C, T) based on their chemical composition (purines are larger and contain two
rings while pyrimidines only contain one ring).  Their chemical structure allows the specific pairing of the 
purine adenine with the pyrimidine thymine (A-T) and of the purine guanine with the pyrimidine cytosine (G-
C), and these bonds hold together the double-helix structure.

A by-product of this paired structure of DNA is redundancy in the genetic information encoded in an 
organism's chromosomes.  Specifically, the sequence of one strand can be determined from the sequence of the 
other by simply reconstructing the complementary structure of its bases.  This property is key in the ability to 



copy the genetic material of one cell and distribute these copies to its daughter cells during cell division.  
Specifically, the double helix is unwound, and a chemical reaction synthesizes a sister strand for each of the 
two unwound strands, leading to the creation of two double helices, each an identical copy of the original.  

It is important to remember that this process of replication always occurs in the same direction along the DNA 
strand – a direction termed 5' to 3' due to the chemical nomenclature for the ends of the DNA polymer (for 
more details check out a biochemistry manual or online resources).  By convention, the string of letters 
representing a DNA molecule is always written 5' to 3'.  Converting the sequence of one strand to that of the 
other, thus requires one to both change all letters to their complement, and also to inverse their order, a 
procedure called reverse complementation.  For example, see the two strands represented below and the correct 
representation of the DNA composition of the second strand.

strand 1 5' – ACAGTGCATGCCTGA – 3' 
strand 2 3' – TGTCACGTACGGACT – 5'

string for strand 2 - 5' TCAGGCATGCACTGT 3'

 2.3 RNA – just another type of DNA

Ok, this is just a computer scientist's view and biologists will strongly disagree with this statement.   RNA is 
really a very similar molecule to DNA, where the thymine nucleotide is changed to uracil (U).  Unsurprisingly 
U and A form a complementary bond, matching the situation found in DNA.  Where RNA differs from DNA is
in it's structure and function within the cell.  Above we described a situation where RNA is simply a 'crib sheet'
used to copy part of the DNA as a step towards generating a protein.  In this setting RNA lives as a single 
stranded molecule. An important feature of single stranded RNA is that it can fold onto itself and form base 
pairings along the same strand, as seen below.  

This folded structure makes the RNA molecule rigid and allows it to be used as a structural element in other 
cellular objects.  A good example is the ribosome – a complex of proteins and structural RNA that is the 
molecule which synthesizes proteins from the template provided by a gene (more on that below).  The folded 
RNA structure (also called secondary structure) also plays a role in gene expression, for example by stopping 
certain biochemical processes such as transcription or translation (sort of like a knot on a rope preventing it 
from going through a hole).

It is important to note that such self folding is not only restricted to RNA and single stranded DNA molecules 
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can also self-fold.  Furthermore, as we'll discuss in a bit more detail below, most biological strings (including 
double-stranded DNA) can and do fold up in complex structures that ultimately affect their function in the 
cell.

Also note that RNA can also exist in a double-stranded form.  Such a form is often used by viruses to encode 
their chromosomes, thus many organisms have developed mechanisms to destroy double-stranded RNA as a 
defense against invading viruses.  Similar mechanisms can also be used on purpose to destroy RNA produced 
within the cell as a way to regulate the amount of RNA and/or protein produced in the cell.  Such processes are
part of the fascinating field of gene regulation.

 2.3.1 Proteins – the sequence is just the beginning

Proteins are the cellular molecules that 'do stuff' inside the cell – they are generally responsible for the 
machinery of life.  Proteins are, like DNA, polymer chains composed of smaller molecules called amino acids.  
Amino acids have a same backbone (with the generic chemical formula H2NHCROOH) which is decorated with 
a side-chain (the R in the earlier formula) which determines the type of amino acid (see below)

The amino acids are chained together through chemical bonds between the extreme nitrogen and carbon 
atoms.  There are 20 amino acids generally used in most organisms, thus, proteins can be viewed as strings of 
letters over a 20-letter alphabet.

Viewing proteins as strings of amino acids is, however, overly simplistic as these molecules owe their 
functionality to their three-dimensional folded structure (see below).  The task of inferring this three-
dimensional shape (also called tertiary structure) is the subject of the subfield of protein folding, and is one of the 
big unsolved problems in bioinformatics.

 2.4 Translation – how RNA becomes protein

As mentioned above, the central dogma of life posits that the information contained in DNA (strings over an 
alphabet of 4 letters) gets copied into RNA (also strings over an alphabet of 4 letters) and then converted into 

From wikipedia

Figure 1: Structure of the DNA polymerase, the enzyme that synthesizes a strand of DNA 
using another one as a template. From: www.rcsb.org



proteins (strings over an alphabet of 20 letters).  For this translation to be possible, each amino acid must be 
encoded by a pattern of three or more nucleotides (42 = 16 < 20, 43 = 64 > 20).  Biological systems use a genetic 
code of exactly three letters.  Note that this code is redundant (multiple codes yield to a same amino acid, see 
below) 

Standard genetic code

1st
base

2nd base 3rd
baseU C A G

U

UUU (Phe/F) 
Phenylalanine

UCU

(Ser/S) Serine

UAU (Tyr/Y) 
Tyrosine

UGU
(Cys/C) Cysteine

U
UUC UCC UAC UGC C
UUA

(Leu/L) Leucine

UCA UAA Stop (Ochre) UGA Stop (Opal) A

UUG UCG UAG Stop (Amber) UGG
(Trp/W) 
Tryptophan

G

C

CUU CCU

(Pro/P) Proline

CAU (His/H) 
Histidine

CGU

(Arg/R) Arginine

U
CUC CCC CAC CGC C
CUA CCA CAA (Gln/Q) 

Glutamine
CGA A

CUG CCG CAG CGG G

A

AUU
(Ile/I) Isoleucine

ACU

(Thr/T) Threonine

AAU (Asn/N) 
Asparagine

AGU
(Ser/S) Serine

U
AUC ACC AAC AGC C
AUA ACA AAA

(Lys/K) Lysine
AGA

(Arg/R) Arginine
A

AUG
(Met/M) 
Methionine

ACG AAG AGG G

G

GUU

(Val/V) Valine

GCU

(Ala/A) Alanine

GAU (Asp/D) 
Aspartic acid

GGU

(Gly/G) Glycine

U
GUC GCC GAC GGC C
GUA GCA GAA (Glu/E) 

Glutamic acid
GGA A

GUG GCG GAG GGG G
(from Wikipedia)

Within a chromosome only specific segments become proteins – these are called genes and are delimited by 
special signals in the DNA sequence.  Simplistically, genes start with a start codon, usually AUG (or ATG in 
DNA) which also encodes the amino acid methionine.  Genes end with one of three different stop codons (UAA,
UAG, UGA).   It is important to note that the start and stop codons must be in frame, i.e., the length of the 
string of DNA separating them must be a multiple of 3, as the cellular machinery (a protein – RNA complex 
called the ribosome) reads the RNA in groups of 3.  

In higher organisms the genes are often broken up in the chromosome into a collection of exons which are 
separated by introns.  During the transcription into an RNA molecule, the exons are spliced together and the 
introns are discarded, and the translation into protein proceeds from the spliced transcript.  It is possible that 
the same set of exons and introns can produce different transcripts, and different proteins, through a process 
called alternative splicing, process which splices together different combinations of the starting exons and 
introns.  Through this process the fairly small number of genes found in the human genome (~26,000) yields 
the tremendous complexity embodied in our organism (many simpler organisms have more genes than we 
do).



 2.5 DNA sequencing – how we 'read' DNA

The ability to read the DNA sequence of an organism's chromosomes has revolutionized modern biological 
research, and has inspired much of the research described in this course. At the same time, modern DNA 
sequencing technologies have emerged from a meaningful and deep collaboration between biologists, 
biochemists, engineers, and computer scientists.  Future transformative developments in bioinformatics and 
other fields will only be achievable through similarly multi- and inter-disciplinary interactions. In other words:
learn to understand and work with others!

Existing DNA sequencing technologies take advantage of the natural machinery that replicates DNA, which 
they modify so that they can 'spy' on the DNA as it is being synthesized.  For example, Sanger sequencing, a 
technology that dominated the field for over 30 years (and which yielded Frederick Sanger, its inventor, a 
Nobel prize), uses modified nucleotides that block the DNA replication process.  By carefully tuning the ratio 
of normal and modified nucleotides the biochemical reaction that replicates DNA ends up generating a 
population of DNA sequences of different lengths (imagine each of them stopped at a random location in the 
replication process).  These sequences are then sorted by length within a gel and the DNA sequence is being 
reconstructed by reading the terminating base (which is usually tagged with a colored probe).  This approach 
is a first generation technology, and is fairly low throughput – the most advanced instruments can only read 
about 384 sequences at the same time.  

A new breed of sequencing technologies, the so called second generation technologies, have emerged in the early
2000s and use a slightly different approach to read DNA.  Generally, millions of single stranded DNA 
molecules are immobilized on a surface, then an imaging device 'spies' on the DNA replication process as it 
proceeds simultaneously along all these molecules.  The technologies differ primarily through the way in 
which the incorporation of new nucleotides is detected, usually through the emission of light.  This approach 
achieves much higher throughput (tens to hundreds of millions of sequences are being read simultaneously) 
but read shorter segments than the Sanger technology (hundreds as opposed to thousands of letters).  

Recently, third generation technologies have emerged that are able to sequence longer DNA segments (up to 
tens of thousands of letters) as well as to avoid the need for DNA amplification technologies.  The latter 
introduce noise in the data, and are essential in the first and second generation technologies in order to ensure 
sufficient signal is generated during the sequencing process.

Here I will not go into more details about the specific technologies available today but encourage you to search
online the following terms: Sanger sequencing, Roche/454, Illumina/Solexa, ABI Solid, Ion Torrent, Pacific 
Biosciences, nanopore sequencing.

 2.6 Representing sequences computationally

There are two major formats commonly used to represent biological sequences.  The oldest and widest used is 
the FASTA format. It is an entirely ASCII text format that follows the pattern:
>seq1 some more information
ACCGGTAGCATAGA
CGGATAGACTTAGT
GCATT
>seq2 etc

...

Specifically, each sequence (either DNA or amino-acid) is prefixed by a one line header starting with a greater-
then sign.  The header than contains some sequence identifier (generally similar in syntax to what you would 
use as an identifier in a programming language – no white space, characters, digits, and some symbols 
allowed) and also some additional free-form information.  The latter can be more precisely defined for specific 
applications.  Each header is then followed by one or more rows of sequence information, separated by 



newlines.  There are no specific requirements on the width of these rows, other than an unofficial standard 
keeping them a 60 characters (to fit on an old 80x24 CRT terminal).  Of course, the last line of each record can 
and often is shorter.

Recently, a new format – FASTQ – has been proposed for encoding DNA sequences, and very specifically the 
sequences produced by modern sequencing experiments.  This format is also split into a collection of records, 
one for each sequence, and each of which uses up four rows as follows:
@seqid other info
ACCAGTACGTCCGTG

+seqid other info    (optional)
!+30qr-130!@+-@

Just like the FASTA file, the first and third lines encode header information including a sequence identifier, 
prefixed by the 'at' sign (first line) and the plus sign (third line). The information on the third line is the actual 
DNA sequence, while the last line in the record encodes the quality information for each nucleotide.  The latter 
is information provided by the sequencing instrument that describes the uncertainty in the specific call 
(essentially the noise in the signal processing used to convert the signal into a DNA sequence). 

The quality information merits a few additional qualifications.  First, the quality concept was introduced in 
Sanger sequencing and is supposed to be − 10 log10 perror where perror is the estimated probability of error.
For example, a quality value of 20 indicates a 1 in 100 probability of error.   Second, the letter string encoded in 
the FASTQ format is a translation of the actual quality values into printable ASCII characters.  For example, an 
offset of 48 would convert the number 0 into the character '0' (the zeroth position in the ASCII table is the 
unprintable NUL character).  

While the FASTQ format is quite widely used it has several major limitations.  First, it is unclear why datasets 
commonly comprising tens of millions of sequences need to be encoded in a human readable format.  Second, 
the header information is unnecessarily verbose (can even be duplicated in the first and third lines of the 
record) and is often of roughly the same length as the sequence itself.  Finally, the function translating integers 
into printable characters is not standardized nor obvious from the file itself.  There are, in fact, several 
competing and incompatible formats that cannot be immediately distinguished from each other.  A much 
better option would have been the development of a binary file format and associated utilities for viewing, 
editing, and converting this information.

 2.7 Exercises

1. How many open reading frames are present in the following DNA sequence (assume the start codon ATG 
and the stop codon TAA)?  Please highlight where all these ORFs occur.
ATGCATCATGGATGTTAATGTAACCGTCTAACTAA

2. A "palindrome" is a DNA sequence that is equal to its reverse complement. Please construct a palindrome of 
length 8 that uses all of the 4 DNA letters.

3. Assume you are trying to find out more information about a particular gene (say gene oprD) and the 
corresponding protein product.  Which online biological database would you start with?     (note: wikipedia is 
not an appropriate answer)

4. Identify the longest open reading frame (ORF) in the following DNA sequence (note: start codon ATG, stop 
codons TAG, TGA, TAA)
ATGATATGATGTCACAGGATGTAGATGCTCCGACATAAGCTTAG

Pick one position in the ORF found above and indicate which type of mutation (insertion, deletion, or 
mutation) would be called a "frame-shift mutation".  Briefly explain why.



 3 Exact matching

One of the most basic string operations is finding an exact copy of one string (often called query or pattern) 
within a longer string (text or reference).  One can easily come up with simple examples of this operation in 
pretty much all text related applications, such as finding a word or short phrase within a webpage or 
document.  Similarly, there are many such examples in biology.  For example, restriction enzymes (proteins 
that 'cut' the DNA at specific locations in the genome) recognize exact patterns within a genome. Finding all 
such restriction sites is, thus, an instance of exact matching.

In this section we will try to develop fast algorithms for this seemingly simple problem.  First, let's explore the 
following question:

Given a pattern (query), does it exist in the text (reference)?
Example:

text position 1  i            n = 17   
Text ATTCACTATTCGGCTAT
Pattern GCAT
pattern position 1..m = 4

Before reading the following, try to come up with an algorithm to solve this problem.  How 'expensive' is this 
algorithm?  

As a quick aside – in Computer Science we generally compute the 'cost' of an algorithm in terms of two main 
commodities: time and memory needed to execute the algorithm.  To simplify calculations at this point, 
assume that each object (letter, integer, etc.) uses up one memory location and that the only 'expensive' 
operation is the comparison of two characters.  Thus, the run time of the algorithm would be expressed as the 
number of comparison operations.  Also, as convention throughout the class, assume the text has length n and 
the pattern length m.  

 3.1 Naïve Approach

The most simple algorithm for exactly matching a string to another one works as follows. Start with the first 
character of the text and the first character of the pattern and compare each character individually.  If a 
mismatch occurs shift the pattern one character and repeat the procedure. Terminate when either a match is 
found, or not enough characters remain in the text. 

Here is the algorithm in pseudo-code:

Now, let us try to analyze this algorithm.  First, its memory usage.  Clearly we are only storing the pattern and 
the text (n + m memory locations) and a few additional variables (i, j, n, m), or a total of n + m + 4 memory 
locations.   Since the memory usage is proportional to the total size of the inputs we say that our algorithm has 
'linear memory usage'.  

for i=1,n - m + 1
for j=1,m

if P[j] != T[i+j-1]
goto NOMATCH

      end for
report match found @ position i
NOMATCH 

end for



How about the run time?  A quick back of the envelope calculation tells us that we repeat the comparison 
operation P[j] != T[i + j -1] m times in the inner for loop, which itself is repeated n – m + 1 times in the outer for 
loop, or a total of (n – m + 1) * m = nm – m2 + m operations.  

If we just want to coarsely compare the performance of different algorithms, we do not really need to go into 
this much detail, rather it is sufficient to focus on the largest term of the equation above and it suffices to say 
that our algorithm has a runtime 'order of' nm, also written as O(nm).  This kind of reasoning is called 
'asymptotic analysis' and focuses on just the behavior of the algorithm as the size of the inputs grows towards 
infinity.  A full description of this approach is beyond the scope of this class and I encourage you to look up 
additional information if these terms are unfamiliar to you.

Question: Does the algorithm above always perform nm – m2 + m operations?

The answer depends on whether we stop as soon as we find a match, or we continue until we have found all 
the matches of the pattern within the text. In the latter case we will have to do all the comparisons to make 
sure we do not miss any matches.  In the former, as soon as the first match is found the algorithm stops, 
possibly using a lot fewer operations.

Question: Assume we just want to find the first match, do you ever need nm – m2 + m operations?  If yes, when?

The worst case scenario occurs when the pattern 'almost' matches the text, i.e., we have to compare characters 
all the way to the end of the pattern before figuring out the pattern doesn't match.  See the example below.

1  i            n    
AAAAAAAAAAAAAAAAA
AAAAT (m comparisons)
   AAAAT (m comparisons)
      AAAAT (m comparisons)
       ... (repeat for n-m+1 characters)

OK, so is the runtime the best we can do?  Is it good enough for our typical applications?  Let's imagine we 
want to match a 1000 bp sequence to the 3 billion bp human genome.  The total runtime would be on the order 
of 3 1012 operations.  On a 3 GHz processor (and assuming each comparison takes exactly one CPU cycle), the 
calculation would take 1,000 seconds, or about 16 minutes. Given that a typical sequencing experiment 
generates tens to hundreds of millions of sequences, this runtime is clearly too slow for even the simplest 
applications. 

But how can we improve on this algorithm?  The key idea is to use information we've already figured out 
when making earlier comparisons.  If we can somehow reuse our work we might be able to save time.  To 
illustrate this idea we will start with a simple algorithm, the Z algorithm, developed by Dan Gusfield (Gusfield
1997) as an educational tool to help explain the basics of other string matching algorithms.

 3.2 Z Algorithm

For a text T, let us define a simple function Z that captures the internal structure of the this text.  Specifically, 
for every position i∈ (0,n ] in T, we define Z[i] to be the length of the longest prefix of T[i..n] that matches 
exactly a prefix of T[0..n].  We also define Z[0] = 0.  Here is an example:

Text: A T T C A C T A T T C G G C T A T

Z[i] 0 0 0 0 1 0 0 4 0 0 0 0 0 0 0 2 0

Question: Can Z values help in aligning a pattern to a text?



To use Z values as a tool for exact matching, we can construct the following string S = P$T, where P and T are 
the pattern and text, respectively, and $ is a character that does not match any other character in either pattern 
or text. Let us assume for the moment that we have a black box function that computes the Z values for string 
S. 

Question: Can the Z values computed for the string S defined above help us find matches between P and T?

The answer is yes – it suffices to look at the Z values corresponding to characters in T.  Any Z-value equal to 
the length of P indicates the pattern matches.  Specifically, for any i > m, if Z[i] == m, pattern P matches text T 
starting at position i.  (Aside: can Z[i] be greater than m?)

Question: What is the runtime and memory usage of this algorithm?

First, the memory – we clearly need to store the Z values in addition to the pattern and text, for a total of 2(n + 
m) + 1 memory locations.  Even though we are using more memory than the naïve algorithm, the memory 
consumption is still linear in the size of the inputs.  There might be additional memory required by the 
algorithm that computes the Z values, but we'll get to that in a moment.

In terms of runtime, again omitting the work done to compute the Z values, we simply need to examine each 
position in the Z array to find all matches between P and T, or to decide that a match doesn't exist, i.e., the 
runtime is simply O(n) (we only need to examine the Z values corresponding to positions in the text).  Here we
see a much bigger improvement over the earlier naïve algorithm.

To sum up, if we have available an approach for computing Z values, we can perform exact matching much 
faster than the naïve algorithm, without using up (too much) more memory.  

Of course, this result is predicated on the assumption that the Z values can be computed efficiently.

Question: Can Z-values be computed in linear time and linear space?

Note that one could come up with a naïve algorithm for computing the Z values using essentially the same 
approach used by the naïve exact matching algorithm.  Clearly this approach would also yield a quadratic time
algorithm (Aside: write down this algorithm and figure out its complexity in time and memory).

A much faster algorithm can be developed if we cleverly
reuse the work done earlier.  The intuition is that when 
computing Z[i] we can use the Z[j] values for j < i.  Let 
us look at the figure below, where we assume that there 
exists a position j < i such that the Z 'box' at position j 
extends past i, i.e., j + Z[j] > i (see the figure).

The section of the Z 'box' of j that extends past i is 
identical to the same region at the beginning of the 
string (bracket in the figure), information that we can 
now use to compute the Z[i] value.

We can distinguish several cases:

I. the Z 'box' for value k = i – j does not extend past the 
blue region (Z[j] box), k+Z[k] < Z[j].  In that case we 
know that Z[i] = Z[k] – the Z[i] box cannot extend past 
that point as the following character (marked with an x) 
is different from the corresponding character in the 
prefix of the string.



II. The Z 'box' for value k extends past the blue region (k + Z[k] > Z[j]).  In this case Z[i] = j + Z[j] – i, i.e., the Z[i] 
box ends at the end of the Z[j] box.  The reasoning is that the character marked with an x in the figure is 
different from the character at the end of the Z[j] box in the prefix of the string (otherwise Z[j] could have been 
extended), and thus the Z[i] box cannot be extended any further.

III. Finally, in the remaining case, where Z[k] + k = Z[j], we know that Z[i] >= j + Z[j] – i.  The exact value cannot 
be known without checking the additional characters (starting with the one marked ? in the figure).

If you check carefully the three cases above, you can see that in cases I and II we can directly assign the Z[i] 
value without doing any additional comparisons, thus all the work is done in case III.  We will show below 
that this approach allows us to dramatically speed up the algorithm.

But first, what j should we use?  For any i, we will select the value j < i such that j + Z[j] > i and this value is 
maximal, i.e., the corresponding Z 'box' extends the farthest into the string.  The intuition is that this way we 
are making maximal use of the information already computed.  What happens, however, if no Z[j] box extends 
past i?  In that case, we simply revert to the naïve algorithm, i.e. we compare T[i] to T[1], T[i + 1] to T[2], and so
on and stop when we find a mismatch, appropriately updating the Z value.

Z algorithm:

Question: Check the algorithm above and fix the 'off by one' errors (i.e., should k be  i – j or i – j + 1?)

Now, why is this algorithm efficient?  It should easy to see that other than a few additional variables we do not
add any more memory, thus the memory usage remains linear.  But how about the comparisons?  They only 
occur within the two while loops, and only involve characters that have never been compared before, thus the 
total runtime cannot exceed the number of characters in the text, i.e., the runtime is linear.  

Z[0] = 0
maxZ = 0
j = 0
for (i = 1; i < n; i++)
  if (maxZ < i)  // must do the hard work
    l = 0
    Z[i] = 0
    while (T[i + l] == T[l])
      Z[i]++
      l++
    end while
    maxZ = i + Z[i]
    j = i
  else
    k = i – j
    if (Z[k] + i < maxZ) // case 1
      Z[i] = Z[k]
    else if (Z[k] + i > maxZ) // case 2
      Z[i] = maxZ – i
    else // case 3 Z[k] + i = maxZ
      Z[i] = maxZ – i
      l = Z[i]
      while (T[i + l] == T[l])
        Z[i]++
        l++
      end while
      maxZ = i + Z[i]
      j = i
    end if
  end if
end for



Question: Is it important that we only focus on the j whose Z[j] extends the furthest in the text?  Argue/prove why this 
is important for ensuring either correctness or efficiency. (Hint: draw a situation where you are using a sub-optimal j, i.e.,
there exists another j you could use that extends further).

Exercises

1. Implement the Z algorithm in your favorite programming language.

 3.3 KMP – Knuth, Morris, Pratt Algorithm

As mentioned earlier, the Z algorithm was developed by Dan Gusfield as a way to teach string algorithms.  
The ideas we just presented should help guide you through the approach used by the Knuth Morris Pratt 
(KMP) string matching algorithm. 

To develop the basic intuition about this algorithm, let us start with the naïve string matching algorithm 
described at the beginning of this chapter.  The matching process compares the pattern to the text until either a 
match or a mismatch is found.  In case of mismatch, the algorithm shifts the pattern position by one and 
restarts all the comparisons.  Can we, however, reuse some of the information we learned while matching the 
pattern to the text.  Let us look at the example below.

1 i              n    
XYABCXABCXADCDAFEA
  ABCXABCDE
      ABCXABCDE

The naïve algorithm starts by matching all the characters highlighted in green, then mismatches on character D
in the pattern, aligned to character X in the text.  The intuition behind the KMP algorithm is that we can now 
simply shift the pattern over until its prefix matches a previously matched section of the text, as highlighted on
the third row of the example.  Thus, we can potentially save a lot of computation (comparisons) by not trying 
to match the pattern earlier.

Let us now formalize this approach better.  We will define a new function, sp[i], which is defined for every 
position in the pattern.  For every i∈ (1,m ] sp[i] is the length of the longest non-trivial suffix of P[1..i] that 
matches exactly a prefix of the pattern.  

pattern: A T T C A C T A T T C G G C T A T

sp[i] 0 0 0 0 1 0 0 1 2 3 4 0 0 0 0 1 2

As in the case of the Z algorithm we will assume for now that the sp[i] values can be computed efficiently.  Can
we use these values to speed up alignment?  The basic idea is to shift the pattern i – sp[i] positions (rather than 
1) once we mismatch at position i + 1, such that the prefix of the pattern is aligned to the corresponding 
matching suffix (see figure below).  The matching continues from where it stopped (position in the text aligned
to the X in the figure) as we already know the shaded region matches the text.

Question: Are we missing any matches when shifting so far?



To convince ourselves (i.e. prove) that the shifts are correct, i.e., we are not skipping any possible matches, we 
proceed with a proof by contradiction. Assume that there is another match between the original position of the 
pattern and the new one (which would be missed if we just jump along).  The figure below shows this 
situation.

Assume the completely shaded pattern matches the text fully. As a corollary, the prefix of the pattern matches 
within the text in the same region where the pattern orginally matched (region before the X at the first position
of the pattern), region that also matches the suffix of P[1..i] represented by the sp[i] value.  This is clearly a 
contradiction with our initial assumption that sp[i] is the maximal such value. QED

Question: Is the KMP algorithm efficient?

Let us concentrate on the number of comparisons we make.  It should be obvious that once a character in the 
text was matched with a character in the pattern, we never examine that specific character again. At the same 
time, the pattern can mismatch the same character in the text (that is aligned to the X in the figure) multiple 
times.  Notice, however, that every time we hit a mismatch, we shift the pattern by at least one position (sp[i] < 
i), thus the number of shifts (and therefore comparisons) is bounded by the total length of the text.  To sum it 
up, during our algorithm we encounter at most n correct matches, and we shift the pattern at most n times, for 
a total run time of 2n, i.e., the KMP algorithm is efficient.  The memory usage is also good – we only use an 
additional m memory locations to store the sp[i] values.

The only bit remaining is computing the sp[i] values in linear time.  The most simple approach is to use the Z 
algorithm, as there should be obvious similarities between the two concepts.  Before you attempt to write such 
an algorithm, let us make a small change to the KMP algorithm.  Let us define a new sp array, sp', where sp'[i] 
is the length of the longest suffix of P[1..i] that matches a prefix of P, and P[sp'[i] + 1] != P[i + 1] (the character 
after the matching suffix-prefix is different).  

You can quickly check that running the KMP algorithm using the sp' values is equally correct and efficient.  
The new values are, however, easier to compute using the Z values.

Note: The sp' values highlight an interesting aspect – we are essentially being smarter about predicting what 
character is being aligned next (or more precisely what character isn't aligned next).  An obvious extension of 
the sp' values would give us even more advance information.  Since it's so obvious, we'll discuss it in class.

 3.3.1 Exercises

1. Write out the algorithm for computing sp' values using the Z values.

2. Explain why the sp' values are easier to compute using Z values than the original sp values.

3. Implement, in your favorite language, the algorithms described above.

4. The genomes of many bacteria are circular.  In order to represent the data in a linear form, genome 
assembly programs pick a random location in the genome to break the circle.  Thus, it is possible that 
running the same program multiple times we would get different answers, corresponding to different 
circular rotations of the same string.  Using the Z values described in class, describe a simple algorithm 
that identifies whether two DNA strings are circular rotations of each other. For example, string 
ACATTCAT is a circular rotation of string TTCATACA.  (Hint: this algorithm is a simple extension of 



the algorithm used to perform string matching based on Z values).

5.  Write out the Z-values for the following string:
                    1 1 1 1 1 1 1 1 1 1 2 2 2 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
A G A G A G A C C A G C A G A G A G A G A C G T 

Assume you are trying to compute Z[14]  - please explain how you compute this value using the efficient 
algorithm described in class.  Specifically:

a) what are the values for j and Z[j]?
b) which earlier value of Z do you need to make this computation?
c) do you need to perform any additional character comparisons?

6. Give an example showing that k, the number of occurrences in T of patterns in set P, can grow faster 
than O(n + m).  Be sure you account for the input size n.  Try to make the growth as large as possible.

7. Define one possible relationship between sp(i) and sp(i – 1).
Can you define a similar relationship between Z[i] and Z[i – 1]?

 3.4 The original KMP computation of sp values

The Z algorithm and its use in the computation of the KMP sp' values has served its pedagogical role and has 
hopefully provided you with a better understanding of the way we reason about string matching.  Below we 
will describe the original KMP algorithm (specifically the computation of the sp values).  While we can clearly 
achieve the same results using the Z algorithm, the KMP approach will prove useful as we explore other 
aspects of string matching, such as the ability to simultaneously match multiple strings.

As you should already expect by now, the KMP algorithm achieves efficiency by reusing the results of earlier 
computations.  This general optimization technique is called memoization and will pop up repeatedly in this 
class, most prominently when we discuss dynamic programming.

Thus, let us assume that we are trying to compute the value sp[i + 1] and that we already know the values sp[j] 
for all j <= i.  Also, let us denote by c the character at position i + 1 in the pattern (c = P[i + 1]), and by x the 
character at position sp[i] + 1 (x = P[sp[i] + 1), i.e., the character that follows the prefix of P that matched the 
suffix ending at i.  If the two characters match (x == c) we can simply extend the matching prefix/suffix pair by 
one character to obtain sp[i+1] = sp[i] + 1.  What happens, however, if x != c?  In this case sp[i] provides us with 
no additional information, but we might be able to use sp[sp[i]], the suffix of P[1..sp[i]] that matches a prefix of
P.  Here we will compare c with x', the character following this new prefix (see figure below).  If they match, 
sp[i+1] = sp[sp[i]] + 1.   If they don't, we simply continue trying further sp[sp[...[sp[i]]...]] values until we either 
find a match, or we 'bottom out' indicating no such prefix exists.  In the latter case we simply set sp[i + 1] = 1 if 
c = P[1], or sp[i + 1] = 0, otherwise.

The correctness of this algorithm should be fairly obvious.  Its efficiency, however, is unclear.  At every position
in the patter we might have to recurse through many sp[j] values before being able to compute the value of 
sp[i+1].  For now we will omit a proof of this property, which can be found in (Gusfield 1997) pages 50-
51(Gusfield 1997).  The intuition behind the proof, however, is that we can 'charge' every recurrence to a 
previously matched character in the pattern.  Thus, while any particular computation may 'stall' for a number 
of steps, the total number of recurrences will not exceed the length of the pattern, yielding an overall linear run
time.



 3.5 Boyer-Moore algorithm

Another algorithm with a similar performance to KMP is the Boyer-Moore algorithm, though the 'philosophy' 
of this algorithm is quite different.  The key idea behind Boyer-Moore is that our naïve algorithm made an 
arbitrary choice in how it compares the pattern to the text.  Specifically, we shift the pattern to the right after 
every mismatch, and when we compare the pattern to the text, we start comparing from the left.  We could, 
however, have as easily started the comparisons from the right and the algorithm would not be changed at all. 
Starting to match from the right, however, gives us a window into the future – based on how the pattern 
matched the text, now we have some information about the text that might be useful as we move forward. 

The Boyer-Moore algorithm tries to use this information using two simple rules:

1. The bad character rule – if P[i] mismatches character x in T, shift pattern P until x aligns to the identical
letter in P (of course we want to shift by the smallest amount such that this property holds, otherwise 
we might miss matches).  

2. The good suffix rule – this rule is very similar in spirit with that of the KMP algorithm: shift pattern P 
until we find another occurrence of the suffix of P that already matched the text in our earlier attempt 
(see picture below).

The intuition behind the 'bad character' rule is very simple – there's no point shifting the pattern to a position 
where we know the aligned characters do not match.  Similarly, the 'good suffix' rule ensures that at least part 
of the pattern matches the text at the new position.  If neither rule applies, we can simply shift the pattern past 
the beginning of the match in T, specifically to a point where a prefix of P matches a suffix of P.  

Clearly we need to preprocess the pattern in order to make these operations possible.  For the 'bad character' 
rule we will need to record the position of all letters in the pattern.  More specifically, we will construct an 
array R[x, i] which stores the rightmost position less than i where character x occurs.  This information can be 
computed in linear time (Question: how? outline the algorithm) and can help us implement the 'bad character' 
rule. 

For the 'good suffix' rule we will need two new arrays: L'[i] and l'[i].  The first stores, for each position i, the 
largest value < m such that P[i..n] matches a suffix of P[1..L[i]], and P[i -1] differs from the character preceding 
the corresponding suffix of P[1..L[i]].  You can see here a similarity with the definition of sp' in KMP.  The  l' 
array focuses on just the suffix-prefix matches, l'[i] is the length of the longest suffix of P[i..n] that matches a 
prefix of P.   Both of these arrays can be easily computed using the Z algorithm (Exercise for you to figure out).

When executing the Boyer-Moore algorithm, we always choose the shift that advances the pattern the most.

Example:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6



pattern: A T T C A C T A T T C G G C T A T

L'[i] 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 1 14

l'[i] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0

Question: Does Boyer-Moore good suffix rule miss any matches?

Proof is similar to that for KMP

Question: Is the Boyer-Moore algorithm efficient?

The answer is yes but the proof is quite complex.  See (Gusfield 1997) pages 39-47.

An important feature of the bad character rule is that now the efficiency of the algorithm is directly tied to the 
size of the alphabet – the memory required to store the R array is dependent on alphabet size. 

 3.5.1 Exercises

1. Does the bad character rule add anything? In other words, are there situations where the bad character 
rule allows the algorithm to be faster than if just the good prefix rule was used?

2. The Boyer Moore (BM) algorithm uses a “bad character” rule in addition to the suffix rule for 
determining how far to shift the pattern across the text after a mis-match. In short, BM compares the 
pattern against the text, character by character, starting at the end of the pattern. Once a mismatch 
occurs—character x in the pattern is aligned to character y in the text—the BM “bad character rule” 
shifts the pattern to the first occurrence of character y in the pattern. In addition, BM uses a “good 
suffix rule”, shifting the pattern, after a mis-match, to the point where the suffix of the pattern that has 
been compared against the text matches again within the pattern. In contrast, the KMP algorithm, 
compares the pattern from left to right, and uses a “good prefix” rule, shifting the pattern until a prefix 
of the pattern matches the suffix of the already-compared region of the pattern. 

It is possible to add a “bad character” rule to KMP in addition to the “good prefix” rule. Evaluate how 
efficient this rule is and explain why it is more effective in the Boyer-Moore algorithm.

 3.6 Periodicity of strings

Here is just a quick introduction to several useful properties of strings, specifically related to periodicity.  For 
now we won't make much use of these concepts but arguments based on periodicity can form the basis of 
elegant proofs in the realm of strings, such as the proof that the Boyer Moore algorithm runs in linear time. 
First some definitions.

Definition 1.  A string S is periodic if S = BBBBB..B for some shorter string B. The length of B is the period of the 
string.

Definition 2.  A string S is suffix semiperiodic if S = BBBB..Bα for some prefix α of B

Definition 3.  A string S is prefix semiperiodic if S = αBBBB..B for some suffix α of B

It may not be immediately obvious but any string that is prefix semiperiodic is also suffix semiperiodic with 
the same period.

It is also possible to show that if a string is semiperiodic with two different periods of lengths p1 and p2 it is 
also semiperiodic with the greatest common denominator of the two periods GCD(p1, p2).  

Ok, so what does periodicity have to do with sequence matching?  Imagine that a pattern of length m matches 
at two overlapping positions in the text, t1 and t2, and that these positions are spaced by less than half the 



length of the pattern ( |t 1− t 2|<⌊m2⌋).  In that case we can show that the pattern must be semiperiodic with 

period |t1 – t2|.  This property is actually useful in the proof that Boyer Moore good suffix rule leads to a linear 
time algorithm. The general idea of the proof is that either the algorithm shifts the pattern a lot or parts of the 
pattern are periodic – property that allows us to bound the amount of work done by the algorithm.  If you are 
curious, the full proof is described in (Gusfield 1997) pages 39-47.

 3.6.1 Exercises

1. Prove that a prefix semiperiodic string is also suffix semiperiodic with the same period.

2. Prove that a string semiperiodic with two different periods is also semiperiodic with their greatest 
common denominator.

3. Prove that a pattern matching a text at two locations spaced by less than the length of the pattern is 
semiperiodic with the period equal to the spacing between the matching locations.

 3.7 Dealing with multiple patterns – Aho-Corasick algorithm

So far we have managed to solve the exact matching problem efficiently when we only need to search one 
pattern against a text. What happens, however, if we want to match multiple patterns against a same text?  Can
we do better than matching each character to the text separately?  This situation occurs quite commonly, e.g., 
when mapping all the reads generated in a sequencing experiment against a genome. 

Let us assume we have z patterns, each of length m, and we want to match them against a text of length n.  The
trivial algorithm leads to a runtime of O(z(n + m)), which can be prohibitive for large values of z (e.g., millions 
of sequences matched to a genome).

A first intuition behind the Aho-Corasick algorithm is the idea that we should exploit similarities between the 
patterns as much as possible, the same way we've exploited self-similarity within the patterns in KMP and 
Boyer-Moore.  The datastructure we'll use is called a keyword tree – just a fancy word to say we'll construct a 
tree structure that merges together patterns which have common prefixes (see below for patterns abcq, abcr, 
bcde, cd).  Each edge in this tree is labeled with one single character, and every path from the root to a leaf 
spells the sequence of one of the patterns.

This structure is just a (slightly) compressed way to store the patterns together.  Having the shared prefixes 
along the same path in the tree should also allow us to simultaneously match (up to a point) multiple patterns, 
though in the worst case this ability alone does not allow us to improve on the naïve search of each pattern 
against the text. 

Ok, so how would the matching process work with a keyword tree?  We simply align the root of the tree to 
some position in the text, then follow the path indicated by the corresponding letters in the text until we either 

Figure 2: Keyword tree



reach a leaf (i.e., one of the patterns matched) or find a mismatch.  In the later case we simply shift the position 
of the root in the text and restart the alignment.  This is clearly a worse algorithm than running KMP on each 
string independently, as I've just described a tree-based version of the quadratic time naïve matching 
algorithm.  

The key insight behind speeding up the algorithm is that we can try to implement the KMP preprocessing 
approach on all the patterns simultaneously.  To better understand this idea, think of simply following one of 
the paths in tree until we hit a mismatch.  For one of the patterns P along that path we already know how to 
compute the sp[i] values, and thus can shift the pattern (and implicitly the tree) to the position indicated by the
corresponding sp value.  Would this shift, however, be correct?  By the definition of the sp values we know that
as far as pattern P is concerned, shifting by the amount indicated by the sp value will not miss any other 
matches of P.  What we cannot guarantee is that we do not miss matches of another pattern Q in the set.  What 
we are, thus, looking for, is a way to extend the sp values to the entire set of the patterns.  Specifically, we will 
try to find the longest prefix of some pattern (longest path starting at the root) that matches a suffix of the path 
we have already matched. We will encode this information as links between nodes in the tree. 

More formally, we will define a collection of failure links that, for every node N in the tree, connect N to another
node M which has the following properties: (i) the path from root to M spells a suffix of the path from root to 
N; and (ii) M is the deepest such node (the longest suffix-prefix match in the tree).  If no such node exists we 
simply link N to the root of the tree.

So how can we use this information to align the tree to the text?  As in the naïve algorithm, we start with the 
root of the tree aligned to the beginning of the text and match the text and a path in the tree with each other 
while advancing a pointer in both of them.  When we encounter a mismatch, we simply follow the failure link 
in the tree, and restart the matching process from the new location, without moving the pointer in the text, the 
same way we have done in the KMP algorithm.  It might help to work through a few examples but you should 
be able to see that we never need to 'rewind' within the text as we'll always be able to guarantee that the path 
from the root to the current node in the tree already matches the text (due to the definition of the failure links).

The runtime of this algorithm (ignoring the time needed to compute the failure links) is simply O(n + m) 
(rather than O(n + zm)), following the same type of argument we used in the construction of the KMP sp 
values.  Clearly every time we match a character in the text we never examine that character again.  We could, 
however, have many mismatches at any specific position in the text.  The number of such mismatches can 
however be bounded by the total matches made so far, as follows.   Every time we have a match we go deeper 
into the tree.  When we find a mismatch we follow a failure link which, by definition, pushes us higher up in 
the tree.  As we cannot go higher than the root of the tree, a mismatch will not cost us more than the amount of
matches we've already 'banked'.

Can the failure links, however, also be efficiently computed?  The answer is yes – we can simply use essentially

Figure 3: Failure links



the same algorithm used to construct the KMP sp values.  

To formalize the construction of the tree, here is an outline of the construction algorithm:

1. Constructing the basic tree structure – this stage entails searching, for each pattern, the branch that 
represents its longest common prefix with some other pattern that had already been inserted in the 
structure and, if necessary (if the pattern is not contained in another pattern that is already in the tree), 
adding a new edge and subsequent path of nodes leading to a leaf that corresponds to the last pattern 
inserted in the tree.  For example, in  Figure 4, if we assume string abcq was already in the tree, we 
insert string abcr by following the common prefix abc, then inserting a new edge labeled r. 

2. Adding the failure links – after the basic tree is constructed we visit each tree node in breadth-first-
search order, and a failure link is added to every node. In this procedure, first a failure link pointing to 
the root is added to all the direct descendants of the root. Next, in the every phase, when visiting a 
node v we will check whether the last character of the string represented by this node is equal to the 
character that follows the prefix represented by the node link(p(v)) (p(v) denotes the parent of v and 
link(p(v)) denotes the node pointed by the failure link in p(v) ). In that case we simply add a link from v 
to the node representing the character following to link(p(v)). If the letters does not match, we begin a 
series of link transitions (after visiting the node link(p(v)) we will go to link(link(p(v))) and so on). After  
each such visit we compare the letter following the node at which we have arrived to the letter labeling 
the edge into node v. If a match is found following some node w that was reached by a path of failure 
links from v, we set link(v) to be the corresponding child of w. Otherwise, we continue the series until 
we reach the root, in which case the failure link from v will point to the root. 

An alternate construction approach can perform both steps at the same time by adding the characters in the 
patterns to the trie one by one, effectively performing a breadth-first construction of the tree.  Specifically, we 
first add the first character of each of the patterns, then the second, and so on, and also construct the suffix 
links at the same time as we construct the corresponding nodes.

We can prove that this algorithm is linear time (O(zm) due to the size of the pattern tree) in a similar way to the
traditional computation of the sp values in KMP.  Specifically, we define the potential function to be the depth 
of the node which we are currently visiting, and the actual cost of the operation as the number of links we have
to go through in order to define the current link of a node. Since every link decreases our depth by at least one,
for each link we visit we decrease the potential by one. In that way it is easy to prove that the overall running 
time is indeed linear with respect to the total length of the patterns.

One situation we have glossed over is that of a pattern that is a proper substring of another one. In the tree we 
used as an example in this class, see, for example, pattern 'cd' which is also found as a substring in pattern 
'bcde'.  Following the algorithm outlined above blindly we might miss the match of the smaller pattern.  For 
example, assume that we matched the string 'bcd' and mismatched on character 'e'.  The failure link would 

Figure 4: Computation of failure 
links.



bring us to the leaf labeled 'cd', yet our algorithm would not report a match.  Of course, a simple solution is to 
report a match anytime we reach a leaf, whether by matching a character or by following a failure link.  

This simple solution, however, can be very expensive, as we would have to follow the failure links from every 
node just to make sure we haven't missed any matches.  To understand that, imagine that pattern 3 in the 
figure above matches the text.  Simply following the pattern to the end would make us miss the fact that 
pattern 4 also matches. To find that match we would have to follow the highlighted failure link even though 
we didn't mismatch.  Such link transitions cannot be amortized against earlier matches and can, thus, lead to 
inefficient runtimes.

To address this performance issue, we will store a new set of links – the output links – which connect a node to 
all the leaves that should be reported once we reach that node.

Question: Can the output links be computed efficiently?

You should be able to answer that question by slightly modifying the algorithm for computing failure links.  

Now, why do output links help speed up the algorithm?  At first glance, we still spend time following links to 
all the patterns that match. But that's exactly the point – we only follow output links if we output a match, so 
the work we do is justified.  The resulting runtime is O(n + k) where k is the number of matches found during 
the duration of the execution, or O(n + mz + k) overall if we include preprocessing time. This situation 
highlights another interesting parameter in evaluating the performance of algorithms – the dependency of the 
runtime on the size of the output.  This is also another knob we can tune as we try to find the best tradeoff 
between efficiency and utility.

 3.7.1 Exercises

1. Work out the details of the proof that the construction of the Aho-Corasick trie, including suffix links, 

Figure 5: Pattern matching within
another pattern.

Figure 6: Output links (blue) and failure links (red) for patterns ab, abab, ababab.



can be done in time proportional to the total size of the pattern set.

2. Write the pseudo-code for constructing the output links and outline an argument why this construction
is linear time.

 3.8 Matching with wildcards

So far we have assumed that all characters in the pattern must all match. We can also envisage a situation 
where we want to allow mismatches at specific locations in the pattern.  For example, we might want to match 
the following DNA string, ACCATGNTAGGNCGANNTAGGC, where the character N can match any of the 
four nucleotides.  The trivial solution to this problem involves generating all possible such strings (there are 64 
of them) then reporting a match when any one of them matches. Of course we can use the Aho-Corasick 
algorithm for this process, however the size of the pattern set grows exponentially with the number of 'don't 
care' symbols we include.

A better approach involves simply breaking the pattern into a collection of subpatterns comprising all strings 
between the N characters (in our case ACCATG, TAGG, CGA, TAGGC).  We then use the Aho-Corasick 
algorithm to find all locations in the text where these patterns match.  Matches of the whole original pattern 
will be easily recognizable from the spacing of the individual matches.  For example, the individual patterns 
may match at positions 12,19, 24, 29 in the example above.  

 3.9 Special strings

When playing with strings, either for fun, or to test and execute algorithms, it is always useful to have some 
way of creating artificial strings with specific properties.  Here are two special strings that have specific 
properties that make them useful when reasoning about strings (e.g., to find worst case scenarios) or when 
trying to trip up the code you wrote.

 3.9.1 Fibonacci strings

As you can imagine, they are strings inspired by the recursively define Fibonacci series.  Specifically, let us 
denote by Fn the Fibonacci number of order n.  By definition Fn = Fn-1 + Fn-2 for all n >= 3.  F1 = 1, F2 = 1.  Similarly,
we can define FSn = FSn-1 FSn-2 to be the Fibonacci string of order n, where the addition operation is replaced by 
the string concatenation operation.  Also, FS1 = b, FS2 = a.  It should be easy to see that the Fibonacci strings 
have lengths equal to the Fibonacci numbers of the same order.  Here are some examples:

FS1 = b
FS2 = a
FS3 = ab
FS4 = aba
FS5 = abaab

...

 3.9.2 De Bruijn strings

De Bruijn strings are a type of 'comprehensive' strings. Specifically, for a given alphabet Σ and a length k, a de 
Bruijn string of order k contains as substrings all strings of length k over Σ.  To see that such strings exist, are 
compact, and can be constructed we can build a simple graph (called a de Bruijn graph – more on that later in 
the course).  This graph contains as nodes all strings over Σ of length k-1, and its edges connect nodes that 
overlap in a suffix-prefix fashion by exactly k-2 characters.  Specifically, an edge exists for every pair of nodes 
A, B, where the corresponding strings have the form xα, αy where α is a string of length k-2 and x and y are 



characters in Σ. 

It is easy to see that the graph is Eulerian (each node has equal in-degree and out-degree) and thus we can 
traverse it in such a way that every edge is seen exactly once.  This traversal (which is not unique – rather one 
can have an exponential number of such traversals) spells out the de Bruijn string of order k.  

 3.10 Automata

So far we have developed specific algorithms to handle the different string matching problems.  Here we will 
take a short side-trip into the world of automata, a formalism that is intrinsically tied to string matching.

In this context we define an automaton as a construct (to be formalized a bit more below) that recognizes a 
specific language.  The language can itself be formally defined as some subset of the total collection of strings 
that can be constructed over a specific alphabet.  

The automaton can be defined as a collection of states connected by arcs or transitions. Some states are special: 
there is an initial state, where the execution of the automaton starts, and one or more terminal states, which 
indicate that the automaton has recognized a specific string from the language.  The transitions are represented
as triplets (s, t, c) of a source state s, target state t, and character recognized c. Essentially, we have described a 
directed graph, having as nodes the states, edges as transitions, and the edges are labeled with the character 
recognized by the specific edge.

An automaton operates as follows.  Assume a text is fed to the automaton. The automaton starts in the initial 
state, then transitions to different states by matching the character seen in the input with the label on one of the
edges leaving the current state.  A string is recognized or accepted by the automaton if it represents the label of a 
path from the initial state to one of the terminal states. 

As you can see in the example below, a simple automaton can recognize strings that are quite complex.

It is now easy to see that 'recognizing' a string is essentially the same as finding a match of that string within a 
text (the string input to the automaton). Thus, for a particular string we could simply construct an automaton 

Figure 7: Automaton that recognizes all strings that end in bc



that recognizes it.  The automata are, however, a lot more powerful than that – they can recognize languages: 
sets of strings with certain properties.  As an example, the graph we showed above that generates de Bruijn 
strings can be converted into an automaton that recognizes de Bruijn strings by simply making the starting 
state a terminal state as well (this automaton would also trivially recognize the empty string).

It is important to note that there are many other definitions of automata beyond the one given here, and 
automata theory is the basis for much of what we know as computer science.  Also, the automata's ability to 
recognize languages is a central part of parsing, whether we are focused on programming languages (the 
YACC program essentially converts a representation of a grammar into C code that implements the automaton
that recognizes words from the grammar), or natural language.

Let us try to build a simple automaton that can match the pattern GAGGA.

(to fill in during class)

Similarly, we can easily see now that the Aho-Corasick keyword tree is simply an automaton that recognizes 
the patterns stored in the tree.  Of course, the output (or success) links do not quite fit within the formalism 
stated above as they are state transitions that do not consume any characters from the input (though that can 
be easily fixed by having them accept the empty string ε). More importantly, however, following the success 
link transitions should bring us back to the state we started from – something that is not easy to model cleanly. 

The automata we have describe above are all deterministic – for any state, input character combination we 
know exactly which is the next state we will explore.  This property can be relaxed in non-deterministic 
automata where the execution could follow multiple equivalent paths.  These are primarily useful as a 
theoretical construct – e.g., the pattern matching automaton described above could be more simply constructed
as a non-deterministic automaton as shown below.

In this automaton, multiple edges have the same label (! a – any character that is not a), and the automaton 
'magically' figures out to which state it should proceed.  While it is clearly more simple to build such an 
automaton, it is not immediately obvious how to execute one. It can be proven, however, that non-
deterministic automata can be converted into deterministic automata.  Also, there are probabilistic 
interpretations of non-deterministic automata that we will discuss later in the course.

As I've hinted above, there has been substantial research conducted in automata theory which we can possibly 
leverage for string matching applications.  Building an appropriate automaton for a specific matching task can 
be difficult, however once built these automata can be quite efficient (and can be easily implemented in 
hardware).  This is yet another design choice you may have to face as you develop your string matching 
algorithms.

 3.11 Introduction to suffix trees

Now let's get back to the Aho-Corasick algorithm. In its design we needed the 'output' or 'success' links so that 
we can output all the pattern matches even when they occur as a substring of another pattern. We encounter a 



similar situation if we relax a bit our matching problem.  Specifically, we try to find not necessarily a full match
of a pattern against a text, but the longest substring of the pattern that matches a substring of the text.  For 
example, for P = ATTCGCTTAGCCTA and T = GGAGCTTAGAACT the answer is GCTTAG.  Can any of the 
algorithms described earlier solve this longest common substring problem? 

It may not be immediately obvious, but none of the earlier algorithms can solve it efficiently.  Key to their 
correctness and efficiency was the shift function, yet this function only guarantees that we will not miss a 
complete match of the pattern within the text, not that we will not miss a longest substring match between 
pattern and text.  Also, all the algorithms focus on matches that occur at the beginning (KMP, Aho-Corasick) or
the end (Boyer-Moore) of the pattern, while we want to be able to find any substring.

As before, let's ignore efficiency for now and focus on a naïve solution to the problem. This naïve algorithm is 
very simple:

It is not hard to see, however, that the algorithm is inefficient.  We have O(m2) different patterns, each of 
maximal length O(m), thus yielding an O(n + m3  + k) runtime (as before k is the number of matches we may 
find).  Can we possibly do better?

 3.11.1 The suffix tree structure

Let us try to improve this algorithm. First, the algorithm is fairly inefficient because of the large number of 
patterns we have to store in the tree. To reduce this number we'll just store O(m) patterns, specifically, all the 
suffixes of P. Even though we don't store all possible substrings, we may have some hope to solve the longest 
common substring problem as any substring match will be the prefix of some suffix, i.e., we'll run into it as we 
match the suffix along the text.  

Thus, we have our first instance of a suffix tree (or trie), as shown below for the pattern ABC.

Note that we have labeled the leaves with the starting position of each suffix (1 is the longest suffix, etc.) and 
also added the empy suffix Σ. We have also omitted the internal nodes along each path.

This new structure saves a bit of space, reducing the memory requirement from O(m3) to O(m2).  While the 
number of leaves is O(m), even if we don't explicitly store the nodes along the simple paths in the tree we still 
need to store O(m2) characters. Or do we?  A simple 'trick' can help us further lower the space.  Specifically, 
each edge within the tree corresponds to a substring of the pattern, and can, therefore, be represented by its 
coordinates (start and end) within the pattern.  As a result, each edge needs to only store constant information, 
and the total size of the tree becomes O(m). 

The more mathematically pedantic amongst us may object at this point as the edge labels are not necessarily 

Construct all substrings of P
Use Aho-Corasick to match all these sub-patterns to T

Figure 8: Suffix trie for the string ABC



constant information, nor are the labels on the leaves of the tree.  Rather, this information requires O(log m) 
bits of storage, leading to the overall size of the suffix tree to be O(m log m).  Nonetheless this is still better 
than the O(m2) we had before. Also, for simplicity, we will ignore this log m term as for virtually all practical 
strings, coordinates within the string can be represented in a single computer word (especially on the now 
ubiquitous 64-bit architectures).  As you write practical code, however, you should remember this omission 
(which we'll make for many other algorithms in this class) and make sure the underlying assumption holds for
your specific application.

 3.11.2 Adding the failure links

OK, so far we have built a new type of datastructure which only takes up linear space and stores all the 
suffixes of a given string.  We are still missing a bit that will make this datastructure useful.  Specifically, 
remember the failure links in Aho-Corasick.  Can we represent them as well without blowing up the space?  
Just as a refresher, the failure link out of node N with label (string spelled by path from root to N) αβ 
connected N to a node M whose label is β, and β is the longest such string in the tree (the longest suffix-prefix 
match between two patterns).  What do these links look like in a suffix tree? 

It's not hard to see that for any leaf in the suffix tree with label cβ (where c is a character), there exists another 
leaf with label β.  This property stems from the fact that the suffix tree stores all suffixes of the original string.  
Also, β is the longest such string possible, i.e., the link connecting the two leaves satisfies the property of a 
failure link in the Aho-Corasick algorithm.

Question: Does the same property hold for internal nodes of the suffix tree?

Specifically, take a particular internal node of the tree – is the suffix link out of that node well defined, i.e., will 
it connect to another node in the tree or just along some path?  Like above, assume the path for the node is xβ. 
Also, by definition the node is the boundary of a fork in the tree and has at least two children.  To match the 
figure below let us assume the labels of the edges start with A and C.  Like for the leaves we can convince 
ourselves that there exists at least some path in the tree with prefix β, thus the end of that path is the target for 
the suffix link out of the chosen node. To convince ourselves that the end of the suffix link is a node in the tree 
we can observe that there are at least two suffixes in the tree with prefixes xβA and xβB, and thus there must 
also exist two suffixes that are one character shorter: βA and βB.  These share a common prefix β, but differ at 
the next character and therefore the prefix β must be followed by a fork.  

Just as in the case of Aho-Corasick, storing an additional suffix link for each node of the tree does not blow up 
the space and the whole datastructure remains O(m).  Note, however, that we cheated a bit – in the suffix tree 
we hide all internal nodes of the tree with the exception of branches.  Do we need to store failure links (called 
suffix links here) for all the internal nodes as well? If we do, the space would blow up to quadratic.  See the 
situation in the figure below where we are looking at a position in the tree with prefix xβγ, an that this postion 
occurs along an edge (rather that at an internal node). 



Do we need to store a suffix link from this position?  Following the same argument as above there must exist 
somewhere else in the tree a position with prefix βγ. We can implicitly find this position without explicitly 
storing a link by simply following the suffix link of the parent node, then skipping down length(γ) characters 
starting from this new node.  It is important to note that we may have to make a decision at internal nodes 
found along the string γ in order to follow the correct path, thus following these implicit links may not be a 
constant time operation. 

Just to make this part a bit more clear, here's a pseudo-code description on how we would follow an implicit 
suffix link:

Note that all operations are constant time (skip a certain number of characters, compare a character with the 
first character of an edge) and the cost of this operation is only proportional to the number of nodes we 
encounter along path γ.  We will show later that this number will not affect the runtime of algorithms using 
the suffix tree.

 3.11.3 Separating out the suffixes

Note that as described above our algorithm can end a suffix at an internal node (see suffix A in string 
GATTACCA – figure to follow) and can even end a suffix along an edge.  To avoid such situations and greatly 
simplify the representation we simply add the special character $ at the end of the string.  This character 
doesn't match any other character and, thus, forces all the suffixes to end at a separate leaf.  From now on we 
will just focus on this variant of suffix trees.

 3.11.4 Longest common substring computation with suffix trees

So far we have managed to develop a variant of the Aho-Corasick tree that efficiently stores all suffixes of a 
string. Let's see how we can use it to solve the longest common substring problem. We simply run the Aho-
Corasick algorithm as before matching characters in the text to a path in the tree.  While we do so we also 

k – number of characters we have progressed along edge e
n – parent node
sn – target of suffix link from n

select edge se out of sn that starts with the same character as edge e
I:
if length(se) > k simply progress k characters along se
otherwise progress to node at end of se
follow the edge starting with the character at position length(se) along edge e
repeat from I: replacing k with k – length(se) until finding the target of the suffix link



record the deepest location in the tree encountered and the node immediately below this position (possibly a 
leaf).  Upon mismatches we follow the suffix links using either the links themselves (if we get stuck at a node) 
or the implicit suffix link algorithm described above.  We proceed until the end of the text, then report the 
longest match found so far.  

Question: How do we report the matches?

First, it is important to figure out that using the tree is somewhat different than matching a pattern against a 
text.  Specifically, we are not truly shifting the pattern along the text, rather we position the root of the tree at a 
particular position in the text.  We, thus, implicitly align at that position in the text some prefixes of suffixes of 
the pattern at the same time.  The figure below may clarify things a bit.

Here we show a suffix tree that aligns at two different positions in the text.  At the first position, the string cα 
in the text occurs as a path in the tree, i.e., it is the prefix of some suffix in the pattern P.  Note that since there 
are more than one leaf below the point where the match ends, the string cα must occur more than once in the 
pattern (once per leaf below that point), as seen in the figure.  When following the suffix link, the root of the 
tree gets implicitly moved one position in the text, essentially skipping over character c.  It should be now clear
that at any stage in the algorithm, the pattern is not aligned to a particular position in the text, rather all 
matching substrings are simultaneously aligned to the same position in the text.

Thus, the algorithm for computing the longest common substring of a text proceeds as follows.

Question: Is this algorithm efficient (linear time)?

The key is limiting the number of operations done when following the implicit suffix links.  To do so we will 
keep track of the depth within the tree that we have reached at a particular time. 

Figure 9: Suffix tree 'aligned' to two different positions in the text after following a suffix link.

d = 0 # deepest (in terms of characters) position in the tree found so far 
dn = root # node below the deepest position

I:
while tree path matches text
  proceed deeper in the tree

# now we mismatched
update d and dn if the current depth deeper than d
follow implicit suffix link
repeat from I: until end of text is reached.
 



Observation: When following a suffix link the tree depth can decrease by at most 1.

Proving this observation is fairly straightforward. First, note that the depth of a particular node N in the tree is 
simply the number of nodes encountered on the path from the root to N.  By the construction of the suffix tree, 
each of these nodes has a suffix link, and all these links must point to distinct nodes along the path from root 
to s(N).  Assume, for example, that the path to n is cβ, and hence the path to s(N) is β.  Any node M on the path
from root to N would have path cγ, where γ is a prefix of β, and therefore s(M), with path γ, must occur on the
path from root to s(N).  Thus, the node depth of s(N) is at least as large as that of N, with one exception – it is 
possible that one of the nodes above n has a suffix link to the root, i.e., the depth of s(N) may be one smaller 
than the depth of N.

This observation now allows us to bound the total amount of work performed by the algorithm when chasing 
implicit suffix links.  Specifically, we have shown in Aho Corasick that the total number of failure links 
followed during the algorithm is bounded by the length of the text.  Now we'll use the same 'banking' 
argument to bound the amount of nodes traversed each time we follow a suffix link.  By the observation above,
the node depth can at most decrease by one every time we follow a suffix link.  The depth can also never 
exceed m (length of longest suffix) or decrease below 0.  As a result, the total number of nodes visited has to be
proportional to the number of suffix links followed during the algorithm as each increase in node depth is 
'amortized' against one of the decreases in node depth, and we can only decrease the node depth by at most 
one per suffix link followed.

 3.11.5 Matching statistics

Let us define a generalization of the longest common substring problem. For every position i in a text T we'll 
define ms(i) to be the longest substring of T starting at i that is also a substring (somewhere) of a pattern P. It 
can be easily seen that computing the ms(i) values is a by-product of the algorithm for finding the longest 
common substring.  Specifically, in ms(i) we store the depth (in terms of characters) reached during the current
execution.  When following a suffix link we simply increment i and set ms(i+1) = ms(i) – 1, then proceed with 
the algorithm as before.

 3.12 Linear time construction of suffix trees

We will now describe Esko Ukkonen's algorithm for constructing suffix trees in linear time (Ukkonen 1995).  
Note that the suffix tree structure was developed earlier by Weiner and subsequent work by McCreight and 
Ukkonen simplified the construction approach.

The following description can be quite confusing.  I suggest you also use online resources to better understand 
what's going on. The following link http://stackoverflow.com/questions/9452701/ukkonens-suffix-tree-
algorithm-in-plain-english provides a nice description and also a number of other pointers [Thanks Max].  

The basic idea of the approach is that we will iteratively build the tree on prefixes of the string. For example, 
for string BANANAS, we will build the tree for string B, then for BA, BAN, and so on.  We'll denote by T i the 
suffix tree built on the ith prefix of the string S (T1 corresponds to B in our example, T3 is BAN, etc.) At each 
stage in the process we will add one character to all the suffixes stored in the earlier trees, as well as add the 
final suffix for the just added character.  Note that we will ignore the $ character for now, and allow suffixes to 
end along a path in the tree.

Clearly this algorithm appears to be quite expensive.  We process n different prefixes, and at each prefix i we 
have to update i different suffixes, which leads to an O(n2) algorithm. If we take into account the time needed 
to 'find' each of the suffixes we may end up with an O(n3) solution, far from what we are trying to achieve.

A couple observations can help us speed up this algorithm dramatically.   For the following, assume we are 

http://stackoverflow.com/questions/9452701/ukkonens-suffix-tree-algorithm-in-plain-english
http://stackoverflow.com/questions/9452701/ukkonens-suffix-tree-algorithm-in-plain-english


processing suffix α of tree Ti and try to extend it with character S[i+1].  

1. Once a leaf, always a leaf.  Once the algorithm has created a leaf, that leaf will never disappear.  
Furthermore, the string labeling the edge leading to this leaf will always end at the end of the current string 
(position i in the original string for tree Ti) As a corollary, at each stage in the algorithm we do not need to 
update the leaves that are already created. Instead, once we create a leaf we can simply label the end of the 
edge with a special 'end of string' character (remember, the edge is simply a pair of numbers corresponding to 
the coordinates of the edge in the original string).  Once the tree is constructed we will spend O(n) time to 
replace these numbers with n – the end of the whole string. Also note that there are O(n) leaves in the tree and 
we only spend computation when creating each leaf, thus the total time spent on leaves in our algorithm is 
overall O(n).

2. If string αS[i+1] already exists in the tree, all subsequent suffixes also exist. This observation is fairly easy 
to prove.  If αS[i+1] existed in tree Ti, then clearly all other suffixes shorter than it would also be in Ti by the 
definition of this tree.  As a result, when the our algorithm reaches this situation, we can simply stop and 
proceed with the next prefix of S, i.e., tree Ti+1 is complete and we can proceed to Ti+2.  As a corollary, we can 
also bound the number of times we encounter this situation (a suffix of Ti+1 is already in Ti) to O(n) as the 
situation only occurs once per iteration.

3. If a node is created by the algorithm, the node to which the suffix link will point either exists in the tree, 
or will be created immediately afterward.  To see why this is true, assume we are processing suffix α which is 
not a leaf (i.e., α either ends in the middle of an edge, or is a node with two or more children), yet the 
character(s) following α is/are not S[i+1].  If  α ends at a node, the suffix link must already exist since Ti is a 
correct suffix tree. If α ends in the middle of an edge, we must now split the edge and create a new node.  Now
our algorithm will try to add character S[i+1] to the next suffix, β such that α = c β.  If β ends at a node, we 
simply add a suffix link from the newly created node to this node.  If β ends in the middle of an edge, the 
character following β is not S[i+1], i.e., a new node will have to be created, and this node will be the target for 
the suffix link from the previously created node. Thus, suffix links will be correctly created.  Furthermore, the 
process of following from suffix to suffix can use the same approach we used to find the longest common 
substring. Following the same logic, over the total execution of the algorithm, this process also only used O(n) 
computation.

Putting all these observation together we get an O(n) algorithm for constructing suffix trees.

Here is an example of how the algorithm works.



In this example, we build the suffix tree for string
ABCABCD.  At step I we simply build the tree for the
first prefix, comprising a single suffix (A), and create a 
first leaf in the tree.  By the observation above, this
leaf will not need to be updated again, rather the
string will be filled in automatically.  In step II, we
add another suffix (B), the suffix AB having been
automatically added by the leaf rule, and create a
new leaf.  Same deal for step III.  In step IV, like in the
earlier steps, we implicitly add suffixes ABCA, BCA,
and CA represented at the corresponding leaves.  We
just need to add suffix A (the 4th suffix).  As in the
previous iteration we were implicitly left at leaf 3, we
progress to the root of the tree and try to find a path
labeled A. This path already exists in the tree and we
terminate this round. The current pointer is now
placed at the end of this path (character A). Note that
no new leaves or nodes have been created. At step V,
we again know that suffixes ABCAB, BCAB, CAB are
already in the tree at the corresponding leaves.  We
now try to add suffixes AB and B, starting from the
last position we visited in the tree (character A
highlighted in red in step IV).  We find that suffix AB is 
already in the tree and terminate this round.  Note
that we did not need to check if suffix B is also found in
the tree as we already know this fact to be true.  The
pointer in the tree has now progressed to the end of
suffix 4, the B character highlighted in red.  Step VI is
the same as step V, progressing another position
down the same edge.  Finally, we reach step VII
where we try to add the final character to all the
suffixes not ending in a leaf.  We start from the
position where we last ended (the red C character in
panel VI), the end of suffix 4 (we started with this
suffix in steps V, VI, and VII).  As we do not find
suffix ABCD in the tree we create a new node and a
leaf for suffix 4, then progress to search for suffix 5.
We do so by using the skip-count trick we developed
earlier in the context of search.  Specifically we find
the parent of the node (the root in this case), and progress (blindly) down the path from the root that starts 
with B for two characters (length of ABC minus the first character).  At this position we again try to add 
character D to the tree, and since it is not found, we create a new node and leaf 5.  The newly created node 
becomes the target of the suffix link from the previously created node.  We then follow a similar approach 
(move to the root, follow path labeled C one character down) to insert the 6ths suffix (CD), and add a suffix 
link for the previously created node.  Finally, we insert the 7th suffix (D) in the tree, and create a suffix link 
from the previous node to the root.  



Throughout this approach we see that at each stage we either created a leaf, or terminated the execution of the 
algorithm as soon as we found that a suffix existed in the tree.

Note that when creating the suffix links, the node to which the link will point to may already exist in the tree 
(see below), however we are still guaranteed that we will visit that node immediately after creating the new 
node.  The example below follows the insertion of character D in the suffix tree constructed for the string 
ABCACDABC.  In the last panel, the red node already existed in the tree when we try to fill in the suffix link 



for the newly created node (red node in the second to last panel).

 3.13 Applications of suffix trees

• Searching a pattern P against a text T in time O(m) (m – size of pattern, ignoring preprocessing time)

• Finding genomic repeats (sections of a genome that are exactly repeated)

• Shortest/minimum unique string  - find a substring of T that occurs only once in T but all its substrings 
occur more than once.

(to be added)

 3.14 Suffix arrays

Suffix trees appear, at first glance, to solve a wide range of exact matching problems efficiently, in both time 
and space consumption. The constants associated with the O(n) space consumption, however, can be quite 
large as the tree can be viewed as a collection of O(n) pointers, each of which can use up to 4-8 bytes.  In 
practice, the best implementations of suffix trees use about 15 bytes per base (Kurtz 1999), compared to 2 
bits/base needed to store the actual sequence.  Can we store all the suffixes of a string more efficiently, and still 
allow nice searches?

A simple answer is the suffix array datastructure of Manber and Myers (Manber and Myers 1993). In it's most 
basic form, we can store all the suffixes of a string in a sorted list.  We already know how to search sorted lists 
in O(log n) time, thus the problem may be easily solved.

Note, however, that in its basic form, this datastructure is quadratic in size as it must store all the characters in 
all the suffixes.  Just like in the case of suffix trees we can overcome this limitation by simply storing the 
position of the suffix in the string (one number suffices, the starting position).  The resulting structure is much 
more compact – O(n log n), or O(n) if we assume each position can be stored in a memory word (which is 
pretty much guaranteed on 64-bit machines for typical datasets). 

How long does it take, however, to search this datastructure?  At first glance, the simple binary search 
algorithm would yield an O(log n) runtime.  Binary search, however, assumes that each comparison is 
performed in a unit of time.  Comparing strings requires a runtime proportional to the length of the string, i.e., 
in the worst case the binary search may require O(n log n) time.  This is much worse than for the suffix tree. 

To fix the runtime, we make a simple observation: if two suffixes are next to each other in the sorted suffix 
array, these suffixes likely share a common prefix. Thus, while performing the binary search we may be able to 
reuse some of the comparison information.  

Let us formalize this idea a bit better.  We will construct a 'longest common prefix' (LCP) array that stores, for 
every pair of suffixes the length of the longest common prefix of those suffixes.  In other words, LCP[i,j] 
contains the largest number of characters that match exactly at the beginning of suffixes i and j of text T, or 
T[i .. i+LCP[i,j]] = T[j .. j+LCP[i,j]].  Let us see how the LCP array helps find a match in a suffix array for text T.



We will follow the execution of the binary search algorithm as it's trying to find if a string S matches the prefix 
of some suffix in T.  We will pick up the algorithm in the middle of its execution. Just as a brief reminder, 
binary search operates by maintaining the left (L) and right (R) boundaries of the range in an array where a 
particular value may be found, starting with L = 0, R = n, where n is the size of the array. At each stage, the 
algorithm interrogates the position in the middle of this range (M = (L+R)/2) and recurses on the left [L, M]or 
right half [M, R] of the search interval.  We will, thus, assume that we are at particular positions L, M, R in the 
suffix array.  We will also assume that we have, sofar computed the values LCP[S, L], the longest common 
prefix of the query string S and the suffix at the left boundary of the current search interval.  We will now 
compare this value with the precomputed LCP[L, M] value (remember, all LCP[i,j] values are precomputed for 
the suffix array).  We encounter three possible situations:

1. LCP[L, S] > LCP[L, M]

Without comparing any characters, we can now directly recurse on the left side of the search interval as we 
know that string S is lexicographically smaller than suffix M.  Otherwise, the longest common prefix of L and 
M would have been longer.  Another way to see this situation is to realize that S[LCP[L,M] + 1] = L[LCP[L, M] 
+1] < M[LCP[L,M] + 1] (the character following the LCP[L, M] prefix in S is the same in L but must be smaller 
than the corresponding character in M, otherwise the LCP property would be invalidated).  

2. LCP[L, S] < LCP[L, M]

Using a similar argument, we now know that we have to recurse on the right side of the search interval.  Here 
we know that S cannot occur between L and M since the all suffixes in that range share the prefix LCP[L, M].  
By exclusion, S can only occur to the right of M (if S matches a suffix, this suffix must occur between L and R 
by induction as we start with a search interval spanning the entire suffix array).

3. LCP[L,S] == LCP[L, M]

In this case we do not have sufficient information to decide whether we should recurse on the left or right side 



of the array.  To figure out where S may fit we need to compare the characters of S beyond LCP[L, S] = LCP[L, 
M] to the corresponding characters of M.  

To understand why this algorithm is efficient, it suffices to notice that in cases 1 and 2 we never compare 
characters, rather make a decision based solely on the values of the LCP array.  In case 3, we only compare 
characters we have not matched before, limiting the number of successful comparisons to O(m) (m = 
length(S)).  Just as in the case of KMP, we may mismatch a same character of S multiple times, however each 
time we do we recurse in the algorithm.  The total runtime is, thus, O(m + log(n)).

Note, however, that we have cheated a bit by ignoring the runtime necessary to construct the suffix array and 
corresponding LCP array.  

Observation: The suffix array of string S can be constructed in O(n) time from the suffix tree of S.

(to be shown in class)

Ok, we cheat a bit, but at least we now have a linear time algorithm for constructing the suffix array.  The LCP 
array appears to be more complicated.  We defined this array for every pair i,j of suffixes in S, i.e., the array 
must contain O(n2) values and would, thus, require at least O(n2) runtime to compute.  To reduce this time, we 
notice that we do not need to store all LCP values.  Rather, we only use the LCP[L,M] or LCP[M,R] values 
where L, M, R are a triplet of values encountered in the execution of the binary search algorithm.  It is not 
difficult to prove that not all pairs of coordinates will be examined.  To see why, you can represent the 
execution of the binary search as a binary search tree.  Each node in the tree corresponds to a different (L, M, 
R) triplet encountered during the binary search process.  It is, thus, easy to see that the number of such triplets 
is linear (the tree has O(n) leaves, and therefore O(n – 1) internal nodes).  It thus suffices to store only a linear 
number of LCP values.

While we solved our storage problem, we still need to compute these values in linear time.  

Observation: The LCP array can be computed in linear time using the suffix tree of string S.

Observation: For any triplet (L, M, R), LCP(L, R) = min(LCP(L, M), LCP(M, R))

(to be shown in class)

The new data structure, including the suffix array itself (O(n) space) and the LCP array (O(n) as well),  requires
linear space, just like the suffix trees (of course a multiplicative O(log(n)) term is added if we do not assume all 
indices can be represented in constant space). The constants are much lower than for suffix trees, requiring just
4 bytes per base in the most basic implementations (Manber and Myers 1993, Abouelhoda, Kurtz et al. 2004). 
Note, however, that we have taken a hit in terms of runtime as the matching algorithm requires O(m + log(n)) 
time, as opposed to O(m) in the case of suffix trees.

 3.14.1 Constructing suffix arrays without relying on suffix trees

The initial algorithm described by Manber and Myers for constructing suffix arrays did not rely on suffix trees.
Instead, this algorithm used an elegant version of radix sort that we will sketch here.  For the full details please
refer to the suffix array paper (Manber and Myers 1993).

Our goal is to sort in lexicographic order all the suffixes of a string.  While sorting takes O(n log(n)) time, we 
are dealing with strings and also have to account for the time necessary to compare two strings, leading to an 
O(n2 log(n)) algorithm if implemented naïvely.  Note that instead of actually sorting the suffixes, it suffices to 
assign each suffix an index indicating its position in the sorted list.  We will build this index array I throughout
the execution of the algorithm.  

At a first stage we simply perform a radix sort operation using the first character in each suffix.  More 
precisely, we assign the array I with values 0, 1, 2, or 3 depending on whether the first character in each suffix 



starts with A, C, G, or T, respectively.  We have, thus, implicitly broken up the set of suffixes into a collection of
buckets (corresponding to the distinct values of the I array) such that all suffixes in each bucket share the same 
first character.  At the same time we have also filled the first two bits of the final values of the I array.  We will 
now continue to further break up the initial buckets while filling in more information in the I array.  At each 
stage we will double the number of bits known for each value in the I array.  Within each bucket we will also 
double the size of the prefix shared by all suffixes in the bucket. To do so we rely on a simple observation.  Let 
us assume that at stage k we have broken up the array into buckets such that all suffixes assigned to a same 
bucket share a prefix of length l.  The order in which these suffixes occur in the final suffix array can be 
determined by examining the bucket membership of suffixes i + l.  To clarify this point, assume we are sorting 
the suffixes of the string GATTACA.  After the first stage, the suffixes will be grouped into buckets:

0 – A, ACA, ATTACA
1 – CA
2 – GATTACA
3 – TACA, TTACA

The order of the three suffixes in bucket 0 is simply determined by the second character in each of these 
suffixes, which is implicitly encoded in the bucket membership of the subsequent suffixes.  For example, we 
know ACA occurs before ATTACA because suffix CA is in an earlier bucket than suffix TTACA.  

Thus, at each stage k, we can identify the bucket structure by simply concatenating to the I value of each suffix 
i, the I value from the previous round for the suffix i + 2k-1 (assuming we start with stage 0).  Here is the 
algorithm exemplified on the GATTACA example.

Stage 0:
I               Suffix
2 GATTACA
0 ATTACA
3 TTACA
3 TACA
0 ACA
1 CA
0 A

Stage 1:  (note that now all suffixes with the same I value share two characters)

I               Suffix
20 GATTACA
03 ATTACA
33 TTACA
30 TACA
01 ACA
10 CA
00 A

Stage 2: 

I               Suffix
2033 GATTACA
0330 ATTACA
3301 TTACA



3010 TACA
0100 ACA
1000 CA
0000 A

Stage 3: 

I                             Suffix
20330100 GATTACA
03301000 ATTACA
33010000 TTACA
30100000 TACA
01000000 ACA
10000000 CA
00000000 A

Thus, after just 3 rounds we have managed to sort all the suffixes (though in this case their order did not 
change after round 1).  In general it is easy to see that we will have to execute O(log(n)) rounds, and at each 
round we only spend constant time for each suffix (look up I value for suffix i + 2k-1 and append to current I 
value), for a total runtime of O(n log(n)).  While this runtime is slower than the O(n) time for constructing a 
suffix tree, the entire procedure requires very little extra memory (just the I array).  With a bit of extra work we
can also fill in the LCP array at the same time as computing the I array.  

Note that the way we describe the algorithm above, the number of bits added to the I array is proportional to 
the length of the string, still yielding an O(n2) memory footprint.  In practice (though harder to explain), the 
algorithm simply maintains the boundaries of the various buckets within the suffix array and sorts this array 
in place, not requiring additional memory.

Important note: The suffix array, as described, seems to be a big improvement over the suffix tree: for a slight 
penalty in search runtime we can achieve a much lower footprint. Note, however, that suffix arrays cannot 
easily solve the 'longest common superstring' problem due to the absence of the suffix link information.  Such 
information can be, however, added to the suffix arrays in a structure called an Enhanced Suffix Array 
(Abouelhoda, Kurtz et al. 2004).

 3.15 Burrows-Wheeler transform

The Burrows-Wheeler transform (BWT) is a datastructure originally developed in the context of data 
compression (Burrows and Wheeler 1994). We will illustrate this datastructure with a simple example for the 
string BANANA.  Just like in the case of suffix trees, we'll add character $ at the end of the string. We will also 
assume that this character is lexicographically less than any of the other characters in the alphabet.  

The following description is primarily for the purpose of explanation and is not the way the BWT is computed 
in practice.

The first step in the procedure is to create a table that contains all circular rotations of the original string:
BANANA$
ANANA$B
NANA$BA
ANA$BAN
NA$BANA
A$BANAN
$BANANA



In a second step, we lexicographically sort this array:
$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

Finally, we retain the final column of the array:

$BANANA
A$BANAN
ANA$BAN

BANANA$ =>ANANA$B => ANNB$AA
BANANA$
NA$BANA
NANA$BA

Now you can get a bit of intuition about why the transform can be used for compression: the final string 
appears a lot more compressible (strings of a same character can be easily compressed with simple techniques 
such as run-length encoding).  

Also note that while the construction approach described above appears to be quite convoluted, there is a very 
natural connection between the Burrows-Wheeler transform and suffix arrays.  Specifically, if you remove all 
characters after the $ in the sorted table you have:

$
A$
ANA$
ANANA$
BANANA$
NA$
NANA$

or exactly the suffix array of the string. The Burrows-Wheeler transform itself is the string of characters 
preceding each of the suffixes.  This observation also points out to a way for computing the Burrows-Wheeler 
transform without needing to build the O(n2) sized table.

Coming back to the Burrows-Wheeler transform, we have so far presented a simple approach for taking a 
string, scrambling its letters, and obtaining a new string that is more compressible.  This approach would be 
completely useless if we didn't have a way to unscramble the string, a task that is by no means obvious. Let us 
examine the sorted BWT table more closely.

$ BANANA1

A1$BANAN1

A2NA$BAN2

A3NANA$B
B ANANA$
N1A$BANA2

N2ANA$BA3



The last column is the Burrows-Wheeler transform.  The first column is rather un-interesting – it is simply a 
sorted list of all the characters in the string.  Let us number the occurrences of each character in this column 
(shown with superscripts above).  A careful examination of the table shows that the same characters occur in 
the same order in the last column. This property allows us to undo the transform and reconstruct the original 
string from just the transformed string.  In other words, we can reverse the compression and can thus get a 
useful compression algorithm (incidentally, the bzip2 unix utility uses this algorithm). 

To prove this 'last-first' property it suffices to look at the order in which the characters occur in the last column.
Let us focus on just the As (a similar argument can be made for any other string of a same character).  Note 
that A1 is the first character in suffix 6, A2 is the first character in suffix 4, and A3 is the first character in suffix 2. 
The order in which these characters occur in the last column is determined by the order of the subsequent 
suffixes in the table: suffixes 7, 5, and 3, respectively.  Now, shifting our attention to the first column, the same 
three characters occur in the same order because the corresponding strings all start with an A followed by the 
same three suffixes (7, 5, and 3).  In other words, the two orderings are the same in both columns.

Before we describe the decompression algorithm, note that we need to have available to us the first and the last
column of the Burrows-Wheeler table.  The last one is the Burrows-Wheeler transform itself, while the first one
can be easily computed in O(n log n) time by sorting the individual characters in the text. Now, the algorithm 
simply proceeds by starting with the first column in the first row (starting with $), thus identifying the last 
character in the original string.  The last character in the same row (A) is the second to last character in the 
string. To continue this algorithm we need to identify the same character in the first column, operation that is 
now easy based on the earlier observation – we simply need to find the first A in the first column, proceed to 
the last column (now finding an N, the third to last character), and so on.

 3.16 The FM-index and the compressed suffix array – memory efficient exact 
matching

The Burrows-Wheeler transform has so far been useful for compression – can we, however use it for matching?
Clearly, the suffix array is implicit in the Burrows-Wheeler transform.  What additional information do we 
need to perform matching with the BWT? Note that performing matching with the BWT has the potential to 
give us a very efficient algorithm – the BWT is truly O(n) in space and doesn't even incur the potential log(n) 
overhead for representing the suffix coordinates.  

To sketch the search algorithm, let us focus on the BANANA example and try to find strings NAN and CAN 
within this text.  We will proceed in the same fashion as we did before, moving from the end of the pattern 
being matched.  When 'unrolling' the transformed string we knew where to start the process, specifically at the
$ character.  For pattern search, instead, we will simply find all the suffixes that start with N (the last character 
in the pattern):

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
N  A$BANA
N  ANA$BA

We will then examine the last character of these suffixes and retain just those whose last character matches the 
second to last character of our string.  In this case both rows we identified end with the same character (A) 
which also matches the string.  To proceed we must identify the location in the first column where these 
characters occur (the second and third As respectively):



$BANANA
A$BANAN
A  NA$BAN
A  NANA$B
BANANA$
NA$BANA
NANA$BA

Again, we check the last character in the corresponding rows and determine that the string NAN exists in our 
text (one of the rows ends in N) while the string CAN does not (none of the last characters are C). 

In essence the procedure we follow is very similar to a binary search procedure – the search range is always 
represented in the first column as a contiguous range of characters, all matching the current position reached 
in the pattern.  At each stage we update this range by selecting from the last column the characters that match 
the next position in the pattern.  

Note that at any stage in the process we need to find the current character in the pattern within the last column
of the Burrows-Wheeler table, a process that may require O(log n) time, leading to an O(m log n) time runtime 
for our algorithm.  To accelerate this process we can record a simple type of information – for each row we will
record the number of each letter preceeding that row (see below):

ABN
$BANANA 1 0 0 
A$BANAN     1 0 1 
ANA$BAN     1 0 2
ANANA$B     1 1 2
BANANA$     1 1 2
NA$BANA     2 1 2
NANA$BA     3 1 2

This simple information allows us to identify the right range in the first column by simply looking up the 
current character in the pattern at the boundaries of the current range.  For example, when looking for A after 
having matched N (the first stage described above), we notice that the values of the 'previous' array for A are 2 
and 3, indicating that the new search range corresponds to the second and third As in the first column.  
Similarly, after having matched AN, we find that only one N character occurs within the search range and that 
it is the second N in the array.  This simple approach results in a runtime of O(m) as we no longer have to 
perform binary search to find the characters in the array. 

Question: The algorithm described above can easily find whether a match occurs as well as count the number of matches.
How can we determine the location of the matches in the text?

The simple answer (to be discussed in more detail in class) is that we can unroll the text from the location 
where a match is found in order to identify its position in the text, thereby incurring an additional cost of O(n).
This cost can be overcome by simply storing the coordinate of each suffix as well (in addition to the table of 
character counts), allowing us to simply look up the position of the match as soon as we determined that a 
match occurred.  

 3.16.1 The FM-index – balancing memory and speed

As hinted above, the basic use of the Burrows-Wheeler transform in matching can be slow, requiring O(m 
log(n) + n) time to find (using binary search) and identify the location of matches.  Speeding up the process 
requires the use of additional memory which essentially transforms the datastructure into a suffix array (of 
size O(n log(n)), thereby offsetting the main memory advantage of the Burrows-Wheeler transform. Can we 



find a balance between these two extremes?  

The basic idea is to only record the additional information (character counts, suffix array information) for 
specific rows in the Burrows-Wheeler table.   Assume we store this information for every bth row.  Our 
algorithm can simply look up the necessary information at bucket boundaries, but needs to spend O(b) time to 
compute the information within a particular bucket (bounded by the rows where we recorded the 
information).  The total memory requirement is thus reduced to O(n log(n) / b), while the runtime is slightly 
increased to O(m b + b) for matching a pattern of length m.  By varying the size of the bucket b we can, thus, 
choose a different space versus speed tradeoff.  This basic approach is the key idea behind the FM-index 
(Ferragina and Manzini 2000), a search datastructure built upon the Burrows – Wheeler transform.

In the FM-index, the bucket size was chosen to be b = log(n) in order to minimize storage (which becomes 
O(n)) without affecting runtime too much (O(m log(n) + log(n)).  An FM-index representation of the whole 
human genome can occupy less than 3 Gbp (less than 1 byte per base) as opposed to about 12 Gbp for a suffix 
array or 60 Gbp for a suffix tree.  

Also, the FM-index introduces an additional 'trick' that can reduce both memory and runtime at the same time.
As mentioned earlier, the Burrows-Wheeler string is inherently more compressible.  The FM-index uses this 
property to compress the string within each bucket, thereby further reducing the space requirements.  
Interestingly, depending on the exact compression technique used, operations such as finding the number of 
characters matching the pattern within a bucket can be performed more efficiently as well. For example, by 
using run-length encoding the character counts can be computed directly within the compressed string.  Since 
the runtime depends on bucket size, the computation can, thus, be sped up by compressing the buckets.

Note: In the original FM-index paper they used a combination of 'move to front' compression and run-length 
encoding, combination that the authors argue is close to the information theoretic lower bound for 
compression.  The FM-index is, thus, a nice example of a compressed datastructure that allows searches 
without requiring one to uncompress the data – imagine being able to search inside a .gz file.  This line of 
research is likely to become 'hot' as the computational biology community is trying to deal with the large 
amounts of data becoming available.

Note: One of the most 'famous' applications of the FM-index is the sequence aligner Bowtie (Langmead, 
Trapnell et al. 2009), a tool developed by Ben Langmead during his graduate studies in the Computer Science 
Department at the University of Maryland, College Park. 

 3.17 Exercises

1. Remember that a suffix tree is a compressed representation of all suffixes in a string, such that each 
suffix is represented by a different leaf in the tree. The least common ancestor of two nodes in a tree is 
the lowest node shared by the paths from the two nodes to the root. Assume n is the least common 
ancestor of leaves i and j in a suffix tree for string S.

a) What does this node represent?
b) Describe an algorithm that will compute the Z values for S, using the suffix tree.

2. Construct the suffix tree for the string:  ATATCCATCAT$ Please label each leaf with the corresponding 
suffix sequence.  Also indicate the suffix links. 

3. Write the pseudo-code for a recursive function that prints the suffixes (just the labels on the leaves) 
from a suffix tree in lexicographically sorted order.

4.  Describe how you would use a suffix tree to compute the sp(i) values for the KMP algorithm.  How 
would the algorithm change if you tried to compute the sp'(i) values

5. What is the string corresponding to the Burrows-Wheeler Transform shown below?  Only the first and 



last columns from the BWT table are shown.
actgcag$ta

6. Assume we are trying to find whether a longer string L can be imperfectly matched to one or more 
locations of G.  Many heuristic algorithms start by searching for exact matches of short substrings of L –
task for which one can use the algorithm described in point a).  Assume, however, that instead of 
consecutive characters we want to use a spaced-seed approach to find potential matches between L and
G.  This problem becomes a variant of matching with don't care symbols – i.e. the string S is composed 
of a mixture of letters that must exactly match corresponding letters in G, and the don't care symbol * 
that can match any character of G.  An example is: ACA*G**GA.  

Can the Burrow-Wheeler search algorithm be modified to allow don't care symbols? 
7. We showed how to use a suffix tree for a small string P to compute matching statistics msT(i) for each 

position i in the long text string T, i.e. the length of the longest substring of T starting at i that matches 
some substring of P.  Suppose we also want to compute matching statistics msP(j) for each position j in 
P.  The number msP(j) is defined as the length of the longest substring starting at position j in P that 
matches some substring in T. Show how to find all the matching statistics for both T and P in O(|T|) 
time, using only a suffix tree for P.

8. For any pair of strings, we can compute the length of the longest prefix common to the pair in time 
linear in their total length.  Suppose we are given k strings of total length n and want to compute the 

minimum length of all the pairwise longest common prefixes over all of the (k2) pairs of strings, that

is, the smallest length of the pairwise pairs.  The obvious way to solve this is to solve the longest 
common prefix problem for each of the pairs in O(k2+kn) time. 

a) Show how to solve this problem in O(n) time, independent of k, using a suffix tree.
b) How would you solve the converse problem of finding the maximum length among all pairwise 
longest common prefixes?

9. Given two strings (s1 and s2), design an efficient algorithm that identifies the shortest substring of s1 
that is not a substring of s2.



 4 Inexact alignment

So far we have only discussed situations where the two strings we align to each other match exactly (with the 
exception of the alignment with wildcards discussed under the Aho-Corasick algorithm).  What if we want to 
allow for more extensive differences between the two strings? The differences we may allow are simple 'typos' 
such as characters inserted or deleted in one of the strings, and also allowing characters to be aligned to 
mismatching characters.  How can we define a good alignment, and how can we compute it?

 4.1 The edit distance and its computation with dynamic programming

In biological data we encounter a number of 'errors' that require us to find less than perfect alignments 
between two sequences.  Assume for example that we are searching for string ABBA.  We might encounter the 
following situations.  The characters aligned to each other indicate how we might 'edit' one string to make it 
look like the other

ABBA vs ABA (insertion in ABBA, deletion from ABA)
ABBA
AB-A

ABBA vs ABCA (substitution)
ABBA
ABCA

ABBA vs ACA (insertion/deletion and substitution)
ABBA
A-CA

ABB-A
A—CA

Essentially we can view the problem of inexactly aligning one sequence to another as an editing operation – 
changing one string by inserting, deleting, or substituting characters until it perfectly matches another one.  As 
it is clear from the above, there are many ways we could perform such edits.  Clearly finding an algorithm that 
reports all such possible alignments is impractical, both computationally and in terms of the interpretability of 
the results.  For simplicity, we will focus for now on the task of finding just the 'best' match between two 
sequences defined in terms of the number of edits that need to be performed. 

Aside: Often times we (as computer scientists) like to focus on well defined optimization problems even 
though we do not fully understand what objective function we need to optimize in order to match a specific 
biological 'meaning' (which itself is not too well defined a concept).  An emerging and promising area of 
research is the development of approaches that enumerate some sub-optimal solutions as well, allowing 
additional biological information to be brought in to identify the most biologically-relevant solution even 
when computationally modeling such biological information is impractical.

Coming back to the inexact alignment problem, we'll define the 'edit distance' between two strings to be the 
minimum number of insertions, deletions, and substitutions necessary to convert one of the strings into the 
other.  This distance is also called the 'Levenshtein distance' based on the scientist that studied it in the 1960s 
(i.e., before we could sequence DNA).  To compute this distance we will rely on a programming paradigm 
called 'dynamic programming'.  Specifically, let us assume that we have two sequences S1 and S2 and that we 



have managed to align to each other the ith and jth prefix of the two strings respectively.  In other words, we 
assume that we know E[i, j] = edit distance between S1[1..i] and S2[1..j].  We will now attempt to find the edit 
distance for longer prefixes of S1 and S2, and proceeding by induction, we will eventually obtain the edit 
distance between S1 and S2. 

We can distinguish two situations:

1. S1[i + 1] == S2[j + 1] (the characters after the already aligned prefixes)
In this case, we can set E[i + 1, j + 1] = E[i, j] – we simply extend the previous alignment for free (no edit 
necessary)

2. S1[i + 1] != S2[j + 1] 

In this case it's not immediately clear how to align longer sequences and we can distinguish three more 
situations:

2a. E[i + 1, j + 1] = E[i, j]  + 1 (simply 'pay' for a mismatch)

2b. E[i + 1, j+1] = E[i, j + 1] + 1 (S1[i+1] is deleted from S1 or inserted into S2)

2c. E[i+1, j + 1] = E[i + 1, j] + 1 (S2[j + 1] is deleted from S2 or inserted into S1)

We choose among these 4 options by picking the one that leads to the smallest score (min(1, 2a, 2b, 2c)) as we 
try to minimize the number of edits.

It is easy to see that we can represent the E values as a two dimensional array of size n=length(S1) x m = 
length(S2), and that the 4 cases outlined (which we will call 'recurrence equations') above allow us to fill in this
array starting with just its boundaries.  This brings up the question of what these initial conditions should be.  
Specifically, can we compute E[0,j] and/or E[i,0]?  Note that these represent the alignment of the prefixes of one
string against an empty string. Under our definition of edit distance the alignment score we can set E[i, 0] = i, 
i.e., all the characters have been deleted. 

Based on the description above you can see that the score of the best alignment between S1 and S2 is stored at 
location E[n, m] in the table.  But what is the exact pattern of edits implicit in this score? Note that each of the 
recurrence equations corresponds to a specific edit, and when computing the value E[i + 1, j + 1] we implicitly 
select one of the edits (the edit operation that minimizes the value).  We can use this information to work back 
from the best score and reconstruct one of the alignments corresponding to that score.  Specifically, this 
backtracking operation starts by asking for E[n, m] whether its value was derived from equation 1, 2a, 2b, or 
2c, corresponding to a match, mismatch, deletion from S1, or deletion from S2, respectively.  We then repeat 
this process from the relevant prior location in the matrix (E[n-1, m-1] for cases 1 and 2a, E[n-1, m] for case 2b, 
and E[n, m-1] for case 2c).  

[example to be added]

Above we assumed all edits have equal cost.  The recurrence equations can, however, be modified to allow an 
arbitrary cost for each operation as follows.  Assume we are given f :Σ∪ {'− ' }→Σ∪ {'− ' }  a function that 
assigns a cost to the alignment of any two characters in the two strings, or of a character to the '-' symbol 
implying a deletion operation. The equations become:

1. E[i + 1, j + 1] = E[i, j] + f(S1[i + 1], S2[j + 1]) # match

2a. E[i + 1, j + 1] = E[i, j] + f(S1[i + 1], S2[j + 1]) #mismatch

2b.  E[i + 1, j+1] = E[i, j + 1] + f(S1[i + 1], -) # deletion from S1

2c.  E[i + 1, j+1] = E[i + 1, j] + f(-, S2[j + 1]) # deletion from S2

The value for E[i + 1, j + 1] will be selected as the maximum (or minimum) of the four values listed above 



depending on whether the function f is a penalty (e.g., f(A, A) = 0, f(A, -) = 1, ...) or a reward (f(A, A) = 1, f(A, -) 
= -1). 

Note: A nice animation of this algorithm is available at: http://statgen.ncsu.edu/slse/animations/module1.html 

 4.1.1 Local versus global alignment

The algorithm described above requires that the two strings match fully, i.e. it constructs a global alignment.  
We can easily modify this algorithm to relax this requirement.  For starters, let us try to find the best prefix-
prefix alignment between the two strings, i.e. we will identify the prefixes of S1 and S2 that, when aligned, 
have the best edit distance score from among all possible such prefixes.  It should be easily seen that we 
already have the answer.  The value at each location in the dynamic programming table is exactly the score of 
aligning some prefix of one string to a prefix of the other one (by definition), thus solving the prefix alignment 
problem simply relies on finding the best score in the entire table (rather than the score E[n,m]). 

How about converting this algorithm to find the inexact version of the longest common substring problem, i.e.,
find the substrings of each of the strings that align to each other with the best score?  The basic intuition is that 
we want to allow the path through the dynamic programming table to begin elsewhere than the top left corner 
(see figure below).  Note, however, that the way the initial values are set up, we are penalized for omitting 
characters from the beginning of one or the other string, penalty that we can eliminate by simply converting 
the first row and column of this table to 0s.  The problem is still not fully solved as we would still pay a penalty
for any mismatches or indels within the table, penalty that we can eliminate by simply adding '0' as an option 
in the dynamic programming recurrence. 

To summarize, we can solve the local alignment problem simply by filling the initial row and column of the 
dynamic programming table with 0s, and by using the following recurrences:

E [ i+1, j+1]= max{ 0
E [ i , j ]+ f (S 1[ i+1] , S 2 [ j+1])

E [ i , j+1]+ f (S 1[i+1] , '− ' )
E [ i+1, j ]+ f ( '− ' , S 2 [ j+1]) }

 4.1.2 Affine gap penalties

As described above, the edits are completely context independent.  In some cases it is important to construct 
more complex context-dependent rules. We exemplify this idea in the context of gaps (or indels).  In the 

http://statgen.ncsu.edu/slse/animations/module1.html


original formulation of the dynamic programming approach the cost of the following alignments is the same:
ABBBA
A--BA
A-B-A

They both incur the cost of two deletions.  In some cases, however, we may want to penalize the non-adjacent 
gaps more (the second alignment), as the biological 'cost' of inserting a string of gaps is lower than that of 
inserting gaps at different places in a sequence. A good example is the case of the eukaryotic gene structure  - 
in mRNA the gene is a contiguous sequence, while in DNA the gene is a collection of exons separated by 
introns. The latter get 'spliced' out during transcription.  An alignment of the RNA sequence to the DNA 
should, thus, not be penalized for the length of the gaps corresponding to the 'missing' introns.

The dynamic programming algorithm can be modified to take into account more complex gap scores, either 
fully generically – e.g., a function g(ngaps) which gets incorporated in the score depending on the number ngaps 
of adjacent gaps in the alignment.

Incorporating such information blows up the runtime to O(n3) as we will see later.  A less general gap penalty, 
but which can be computed more efficiently, is the affine gap penalty, where the score of a string of ngaps can be 
represented as gopen + ngaps gextend, where gopen and gextend are penalties for, respectively, opening and extending a 
string of gaps.

Historical note:  Alignment started with proteins (which we could 'sequence') in the 1970s.  Originally the 
alignments were global because known proteins were globally related.  Once new proteins were discovered 
that had local similarities but no global ones scientists started developing approaches for finding such local 
alignments.  The approach that eventually got adopted as standard is the Smith-Waterman algorithm (the local
alignment algorithm described above).

 4.2 Sequence alignment statistics

The sequence alignment problem can be viewed as the interplay of three main considerations:

1. The definition of what is a good alignment (generally modeling some biological meaning)

2. Algorithm to compute a good alignment

3. Statistical arguments to determine whether an alignment can be explained by chance

The three considerations are in tension: the most biologically relevant score may be intractable to compute or 
may entail intractable statistics, while tractable definitions may not be closely related to biology.

Above we described algorithms for finding an inexact match between two strings and assumed we had some 
arbitrary scoring function that determined the score of aligning or mis-aligning characters to each other.  In 
this section we delve a bit more in the statistical meaning behind those scores.

Throughout the following we will focus primarily on local alignment as the statistics are well defined and 
easier to reason about.  Such a statistical framework does not exist for global alignment.

We will focus on two main questions: (i) how to define the alignment scores; (ii) how to estimate the 
probability that a particular alignment can be explained by chance.  

The latter question is particularly relevant in the context of database searches.  Assume we have a new 
biological sequence (for now we'll assume we are looking at protein sequences) and try to find a similar 
sequence in a database.  Assume our alignment algorithm finds an alignment of score S between this sequence 
and another sequence in the database. How do we know that the alignment we found is 'real', i.e., it is not due 
simply to chance.  This question falls into the category of statistical hypothesis testing where we are asking 
whether a particular observation belongs in a particular distribution.  The null hypothesis assumes that the 



observation is indeed derived from the distribution, and statistical tests can tell us whether this null hypothesis
is invalidated.  In the context of alignment, the null hypothesis is that our sequence found a match simply by 
chance. Rejecting the null hypothesis would mean that the match found is 'surprising', i.e., the matching 
sequence is probably related to our query.

 4.2.1 Significance of an alignment

Before we proceed it is important to realize that we try to find a scoring function that has some biological 
meaning, in order to insure that our alignments are biologically correct.  By necessity, to make the statistics 
tractable, we will make some simplifying assumptions which we will relax later.  For now we will assume that 
the alignments have no gaps.

The scores are represented by a 20x20 matrix that contains the score of aligning two amino-acids to each other. 
These scores are defined statistically  - they are deviations from chance that two amino-acids are aligned to 
each other.  We need a definition of background probabilities and then try to find a string of letters that are 
aligned in a 'surprising' way.  

We will describe how these scores are computed later. For now, we will focus on the properties we might want 
the scores to have.  It may not be immediately obvious from the description of the dynamic programming 
algorithm, but the type of alignment we find depends strongly on the scoring function.  With a small change 
we can, for example, change the dynamic programming algorithm to only find exact matches (an overkill 
given that we already know how to do it more efficiently).  We will require the following two properties from 
a 'good' scoring system:

• The expected score is negative: ∑ i , j
p i p j si , j<0 .  This property is useful for the math that will 

follow, but also ensures that we can find real alignments among the noise.  If scores are largely 
positive, the alignment algorithm would generally produce very long alignments even when aligning 
random sequences, as simply adding more characters to the alignment will increase the alignment 
score.

• At least some of the scores are positive.  This property is useful for insuring we will find at least some 
alignments. If all scores are negative, the Smith-Waterman algorithm would always select the null 
alignment of score 0.

Theorem: Any scoring system satisfying these properties can be written as si , j=(ln qi , j

pi p j
)/λ= log

qi , j

pi p j

.  

Conversely, a non-zero matrix computed according to the formula above will satisfy our two conditions. The 
values qi,j are called the target frequencies and we will discuss them later.  The λ value is simply a positive 
scaling factor that will not affect the actual alignment algorithm but it is useful for defining the statistics. The 
value of this parameter can be computed analytically as shown below.

To prove the theorem above, we can define a new function f (x)=∑ i , j
pi p j e

si, j x , where si,j  is the scoring 
function we chose.  Based on the assumptions we made about this scoring function we can learn a few 
properties of the function f.  First, f (0)=∑ i , j

p i p j= 1 simply due to the fact that the background 

probabilities are probabilities.  Second , f ' (0)=∑ i , j
p i p j si , j<0  due to the fact that the expected score is 

negative.  In other words, the function f(x) crosses the y axis at value 1 and decreases as x increases.  Third,
f ' ' (x)=∑ i , j

pi p j si , j
2 esi, j x>0 , i.e., f is a convex function.  Finally, since at least one of the si,j values is 

positive, lim j→∞ f (x )= ∞ , implying that the equation f (x)= 1 has a unique positive solution x = λ.  This 
value can be easily computed with standard numerical algorithms for any scoring function.  

We can now simply define qi , j= pi p j e
λ si , j .  These values are all positive and sum up to one since



∑i , j
qi , j= f (λ )=1 . Furthermore s i , j= ( ln

qi , j
pi p j

)/λ , thereby proving the theorem.

We will now focus on the question of aligning two random sequences.  To perform the statistical hypothesis 
test described above, we need to find, for each score S, the expected number of independent local alignments 
that are greater than or equal to this score E(S, m, n).  By independent we mean alignments that do not overlap 
or touch each other.  The product of the lengths of the two strings N = m x n is the size of the search space.

Simply using intuition we can see that E(S, m, n) ~ mn (if you double the space you double the number of 
alignments expected).  How does E(S, m, n) vary with S?  Again intuition indicates that the expectation of the 
number of random alignments must decrease with increasing S (the higher the score, the fewer such 
alignments), and that it will decrease exponentially.  The intuition is based on a simple coin-flipping 
experiment where we try to count the number of heads at the beginning of a series of flips.  The likelihood of a 
string of heads at the beginning of the series decreases exponentially with the length of the string -

p(hheads)= ( 1
2
)
h

= e− ( ln 2)h

Thus,  for a different scoring function we can expect that E (S ,m ,n)∼ eaS where a is a constant.

One can prove mathematically that E (S , m , n)= K mn e− λ S for a constant K, however this proof is very 
complex.  Note that this expectation can be easily interpreted, even if the whole math underlying it is complex. 
Also, note that this formula is asymptotic – it approaches this value for large values of m and n.  For small 
values of m and n additional corrections are necessary.  

The expectation (or E-value) is just one part of the equation – the statistical hypothesis test relies on a p-value – 
the probability that an alignment with score higher than S exists (remember, E is simply the expected number 
of such alignments). Using Poisson statistics it can be shown that p= 1− e− E .  For small values of E, p ~ E.

Also note that the formulas above are parametrized by parameters K and λ, parameters specific to the scoring 
function which must be computed in order to compute the statistics.  The intuition behind the K parameter is 
that it represents the reduced search space within one can expect to find optimal alignments.  To simplify the 
equations we can simply fold the parameters into the score, obtaining a new score S '= (λ S− ln K )/ ln 2 .  

Now E(S, m, n) can be written as E (S ' , m , n)= mn

2S '
, with S' represented in bits (also called the bit score).  

This score can be easily interpreted, as increasing the score by one bit results in a halving of the number of 
random alignments.  As an example, imagine a sequence of length 250 aligned to a database of length one 
billion.  The expected number of local alignments with normalized scores greater than 35 bits is given by the 
search space – 250∗ 109≈ 28∗ 230= 238 - divided by 235, or E≈ 238 /235= 23= 8 .  Increasing the minimum 
score by 10 bits reduces this number by 210, or roughly 1000, leading to an expectation of 0.008 random 
alignments with a bit score of at least 45.

As we already mentioned, we focused on a simplified version of the alignment problem where we allow no 
gaps.  The dynamic programming algorithm we described earlier can tolerate gaps, and we can clearly add a 
gap scoring function to that alignment.  It turns out that this situation can also be modeled statistically in a 
similar way to the description above, however this fact is only evident empirically and has not yet been proven
analytically.  

We need to make sure gaps are penalized enough otherwise we can always get a good alignment by simply 
stringing together high scoring letter pairs with long stretches of gaps.  This is equivalent to the requirement 
that the expected alignment score be negative. There is a transition point in the gap score beyond which the 
gapped alignments behave just like a local alignment.  The transition point can be found experimentally, but 
there is no mathematical proof that allows one to calculate it.  



For a large enough penalty we have the same general statistics but we do not know how to calculate the values
of λ and K.  Instead we can estimate these parameters using the following approach.  First it is important to 
note that the value of the highest scoring alignment (in both the gapped and ungapped cases) follows an 
extreme value distribution. Such a distribution is given by the probability density function
pdf (x)= e−λ (x−u )− e

−λ ( x− u)

, where λ is called the scale, and u the characteristic value.  For optimal local 
alignments, λ is the same as the λ parameter we defined above, and the characteristic value is
u= (ln Kmn)/λ .   For ungapped alignments λ and K can be determined analytically.  For gapped 

alignments we can simply run multiple gapped alignments (for many different random sequences) using a 
given gapped scoring function, find the highest score, then fit an extreme value distribution to the observed 
values.  From the fitted distribution we can now calculate the values of λ and K.

All our theory so far assumes a model of proteins as random strings of letters. Proteins, however, have sections
that do not behave like the random model in part due to the actual structure of the protein. In globular 
proteins the random model is pretty good.  For more 'unusual' proteins the statistics will not work, e.g., the 
expected scores in certain regions are positive.  Some such examples are proteins with long 'tails' comprised of 
a small repeated patterns.  Database searches try to screen out such regions because the statistics don't work, 
and in some sense the alignment idea itself does not make sense in these regions anyway.

 4.2.2 Alignment scores

As pointed out above, any 'good' alignment score can be written as a log odds: si , j= log
qi , j

pi p j

.  This is true 

for any score, whether or not it captures a deeper biological meaning.  In this section we will focus on how to 
tie more closely the scores to actual biological information.  We will do so by defining the target frequencies

q i , j .

To get a better intuition of what we are looking for, note that the distribution/histogram of alignment scores for
random alignments has an exponential distribution – the higher the score, the fewer random alignments with 
that score.  For a search space N=mn, we expect at most one random score to exceed log N.  This property holds
for all possible scoring systems. We will try to find a scoring system that maximizes the scores for true non-
random alignments, i.e., a scoring system that best separates true matches from random matches.  We will use 
a score that relies on the frequency at which amino-acids align to each other in 'true' alignments, specifically 
we will set the target frequencies q i , j to be the observed frequency with which amino-acid i is aligned to 
amino-acid j in a true alignment.  Note that this definition is intuitively correct – if the frequency of aligning 
the amino-acids is larger than expected by chance ( q i , j> p i p j ), the corresponding score si , j will be 
positive.

Note that the idea of 'aligned amino-acids in true alignments' is not a coherent concept.  The alignments and 
amino-acid pairing frequencies depend on the evolutionary distance between the two proteins.  Thus, the 
scoring system must be adapted to a specific degree of evolutionary divergence.  

Deriving scoring matrices from alignments which themselves are constructed with the use of scoring matrices 
entails a certain level of circularity. This circularity was broken by Margaret Dayhoff – she focused on proteins 
that are only 15% diverged. Due to the high similarity, the alignment can be computed correctly irrespective of 
the scoring function.  She then modeled evolutionary change by modeling the frequency with which amino-
acids could mutated into each others.  From these evolutionary changes she could extrapolate out to other 
evolutionary distances, leadin to the PAM model (Point Accepted Mutations).  A point mutation is a mutation 
at a single position.  An accepted point mutation, is a mutation that survived evolution.  The basic unit, 
starting point for the PAM model, is 1 PAM – evolutionary distance such that on average there is only one 
mutation per 100 sites.  



PAM 100 corresponds roughly to proteins that align about 43%.  The best PAM matrix, that is consistent with 
the evolutionary distances most interesting to biologists at that time,  was PAM 250 (proteins ~20% identical). 
This matrix became widely used.

As an aside, what would PAM 0 look like?  These are alignments without any substitutions, i.e., all alignments 
are on the diagonal. The off-diagonal target frequencies are 0, and hence the corresponding scores are negative 
infinity. Along the main diagonal, the target frequencies are exactly the proportion of the specific amino acid, 

and the score is log
qi , i
pi pi

= log
pi
pi p i

=− log pi .   Since the pi values are less than one, the diagonal values are 

positive numbers.

Heninkoff and Heninkoff sought to avoid the extrapolation to large PAM distances (certain phenomena, such 
as slowly evolving amino-acids, cannot be accurately modeled from short-term data) by looking directly at 
certain levels of evolutionary divergence to avoid being biased by slow/fast evolving rates.  Again, they ran 
into the circularity issue.  To overcome this issue they relied on large multiple alignments of sequences at a 
certain level of divergence, and identified blocks of good alignments from which substitution rates could be 
estimated.  Good multiple alignments provide higher confidence that the individual pairwise alignments are 
actually correct, even if the scoring function is not exactly accurate.  This approach led to the creation of the 
BLOSUM matrices. BLOSUM-62 is the most widely used and is roughly equivalent the PAM-180.

One question that arises is whether we can estimate the average substitution score, i.e., the contribution to the 
alignment score of a single aligned letter.  From this score we can estimate the score of an alignment based on 
its length. For this purpose, we will introduce the concept of relative entropy.  Suppose two sequences are 
diverged by 100 PAMs and we compare them with matrix PAM-100 – the average score can be expressed as:

H=∑ i , j
qi , j si , j=∑ i , j

qi , j log
qi , j

pi p j

 This is the relative entropy.  If using log2, the entropy is expressed bits 

per position.  Note that this is the average score of true alignments and it can be shown to be  positive.  
Replacing qi,j with pipj we get the score for random alignments, score which is negative.

We can plot H for different scoring functions (PAM distances, see slides).  The further the sequences diverge 
the less information we get from the alignment.  If we want our alignment to appear above statistical noise, we 
can estimate the number of bits necessary (30-40 bits, depending on database size). We can simply divide the 
relative entropy by this number to find out the minimum alignment length needed before we can separate 
noise from signal.

Note that in general we do not know what divergence level to look for.  What if we use the wrong matrix? We 
can define the efficiency of a matrix at a particular evolutionary distance (e.g., PAM 150 at 100 PAMs 
distance).  The efficiency is the proportion of the score you obtain with wrong matrix compared to the score 
that you would get with the correct matrix (see slides for example).  The efficiency of the PAM y matrix at PAM

distance x can be formally defined as 
∑ i , j

q i , j
x si , j

y

∑ i , j
q i , j
x si , j

x .

The concept of efficiency allows us to understand why we use the BLOSUM-62 matrix.  Assume, for example, 
that we have sequences that are highly similar.  The corresponding alignment would carry a lot of information 
irrespective of scoring function, thus the true alignment will be easily distinguished from noise. Conversely, 
poor alignments will almost always be missed, irrespective of scoring function.  The precise use of the scoring 
function matters only for alignments that have just enough information to be differentiated from noise (~30-40 
bits).  This region, the 'twilight zone' of alignments, falls exactly in the BLOSUM-62 (or PAM-180) range for 
typical alignment lengths biologists are most interested in (~100 or so amino-acids), thus BLOSUM-62 is the 
matrix that leads to the least loss of information for such alignments.  



All that we have discussed above can be extended to DNA alignments. We can come up with an evolutionary 
model for DNA (just like Dayhoff's model) and use it to construct PAM matrices for matches/mismatches, 
allowing us to perform alignments the same way as for proteins.  

Note that we can compare DNA sequences at the DNA level or at the protein level (the translated search – 
simply translate the DNA into an amino-acid sequence and compare the amino-acid sequences).  Which 
approach is better?  We can estimate the information in DNA-level and protein-level alignments.  At close 
evolutionary distances (highly similar sequences), DNA alignments carry more information.  This can be easily
seen from the fact that an exact alignment of two codons (3 base-pairs) contains 6 bits of information as 
opposed to just about 4 for a pair of amino-acids.  At longer evolutionary distances (> 50 PAMs), however, we 
get more information in the protein sequence.  

Note that the observations above apply to naïve alignments of DNA sequences and more complex alignment 
strategies can recover more information. There are, however, computational tradeoffs to be taken into account. 
For example, translated DNA searches multiply the runtime by a factor of 6 (three reading frames on the 
'forward' strand, and three on the 'reverse' strand).  Similarly, 'threading' – an alignment for protein sequences 
that takes into account structural information in addition to sequence information – is more accurate 
biologically, but is NP-hard, i.e., finding the optimal alignment requires sifting through an exponential number
of possible alignments.

Notes:

Many of the ideas described above appeared in (Karlin and Altschul 1990) and (Altschul 1991).   The BLOSUM 
matrices first described in  (Henikoff and Henikoff 1993) turn out to have been incorrectly computed in 
practice, yet their original implementation is more effective at sorting out through the 'twilight zone' than the 
correctly computed BLOSUM-62 matrix (Styczynski, Jensen et al. 2008).  The comparison between the 
information in codon alignments and the corresponding protein alignments was discussed in (States, Gish et 
al. 1991).

 4.3 Advanced topics in sequence alignment

 4.3.1 Context-sensitive alignment (handling complex gap scores)

The approaches we presented earlier assumed that all gaps are equal weight, i.e., the alignments shown below 
are equivalent:
ABBBA
A--BA
A-B-A

As we already pointed out above, these alignments are not necessarily biologically equivalent: a string of 
consecutive gaps may occur in real sequences more frequently than multiple disjoint gap sections (in other 
words, nucleotide insertions and deletions frequently involve more than a single base).  To model such 
phenomena, we can add to the dynamic programming score a gap-specific term, specifically a function g(ngap) 
which assigns a string of ngap gaps a single score.  In our original formulation this score is simply g(ngap) = ngap * 
g where g is the cost of a single insertion or deletion.  

Question: Can we compute the more general score?  

Question: Can we do so efficiently?  

To address these questions we will modify the dynamic programming recurrences as follows.  Note that we've 
renamed the table of scores V (rather than E as we did above) in keeping with historical usage.



V [ i+1, j+1]= max{ 0
V [ i , j ]+ f (S 1[ i+1] , S 2 [ j+1])
max1≤ k ≤ i V [i− k+1, j+1]+ g (k )
max1≤ k ≤ jV [i+1, j− k+1]+ g (k )}

First, let us convince ourselves that this approach yields a correct algorithm.  Note that we have replaced the 
recurrences corresponding to the gap insertions in one or the other string with an exploration of all possible 
gap lengths that could be inserted at that location.   Thus, the new algorithm will automatically pick the 
appropriate gap length to maximize the score according to the generic gap penalty g.  

In terms of performance, however, note that the new recurrences require us to perform O(n) and O(m) work, 
respectively, at each cell in the O(nm) dynamic programming table, leading to a runtime of O(nm(n+m)) or 
O(n3).  Thus, we can incorporate more biology in our algorithm, yet we pay a major penalty in terms of 
runtime.  Can we find a reasonable trade-off between these two requirements?

It turns out that for certain forms of the gap function we can more efficiently compute the alignment score.  In 
particular, we will focus on affine gap penalties of the form g (ngap)= g open+ngap g extend where gopen and gextend 
are the penalties of creating a gap, and adding another gap character to an already existing gap string, 
respectively.  Clearly, gopen > gextend, otherwise it would always make sense to create new gaps rather than extend
existing ones.  This formulation of the gap penalty will allow us to 'remember' the information computed in 
earlier stages of the algorithm, and thus avoid the additional penalty in runtime.  Specifically, we will record 
three new dynamic programming table, E, F, G, in addition to V.  In table E we will retain the best alignment 
scores for alignments that end with a gap in S1, in F are the best alignments which end with a gap in S2, G 
contains the best alignment scores for alignments that do not end in a gap, while V, as before, is the best 
alignment score overall:

E [ i+1, j+1]= max{ 0
V [i+1, j ]+g open+ gextend

E [i+1, j ]+g extend
}

F [ i+1, j+1]= max{ 0
V [i , j+1]+gopen+gextend

F [ i , j+1]+gextend
}

G [i+1, j+1]= max{ 0
V [ i , j ]+ f (S 1[ i+1] , S 2 [ j+1])}

V [ i+1, j+1]= max (E [ i+1, j+1] , F [i+1, j+1] ,G [ i+1, j+1])
Note that these tables can be computed in constant time per operation, or O(nm) overall.  Of course, the total 
space requirement has tripled (the V table can be maintained implicitly), but that is a small price to pay for 
shaving a linear multiplicative factor from the runtime.

The approach outlined above is due to Gotoh, and the affine gap penalties are the standard definition of gap 
scores in the community as they offer the best tradeoff between efficient computability and biological 
plausability.

Exercises: 

1. Using the ssearch program(part of the FASTA package), investigate multiple setting for the gap scores 
and their effect on the alignments created.

 4.3.2 Sequence alignment in linear space

The overall runtime of O(nm) for inexact sequence alignment is not easy to overcome (though we will try to do
so soon).  Can we, however, reduce the overall memory usage?  For computing the scores, it is easy to see that 



we do not need to store the entire dynamic programming table, rather it is sufficient to remember just two 
rows (or columns, or diagonals) in order to find out the best score in the table, as all the values necessary for 
computing a cell are found on just two rows of the table (the current row, and the preceding one).   If we want 
to also find the actual alignment, however, we need to record backtrack pointers from each cell and thus store 
the entire O(nm) table.  

To gain some intuition on why we might be able to do better than O(nm) space, note that the actual best 
alignment itself can be stored in linear space – we simply store one out of the many possible paths through the 
table connecting the two corners (assuming global alignment).  The problem is that we do not know what this 
path will be until the whole table is filled out, hence the need to store O(nm) pointers.  The key idea is that we 
can, in linear space, figure out parts of the optimal path which allows us to eventually reconstruct the whole 
path.

Specifically, the algorithm breaks up the dynamic programming table into two, by focusing separately on the 
alignments of the first and second halves of one of the strings (see below).  For the first half, the alignment 
proceeds as usual, filling the first half of the dynamic programming table up to (and including) the middle 
row.  For the second half, we fill the table backwards, starting from the bottom, effectively matching the 
reverse of the second half of one string to the other.  It is easy to see that the optimal alignment should be the 
same for both the forward and reverse versions of the problem.  Again, we fill the dynamic programming table
up to (and including) the middle row.  Note that the alignment algorithm we use only computes the dynamic 
programming score (does not store backtrack pointers) and it can, thus, be executed in linear space. 

Also note, that the middle row is computed by both the forward and the backward dynamic programming 
approaches.  We will set the value of this middle row to be the sum of the values obtained by the two 
executions.  We argue that the optimal path through the dynamic programming table crosses this middle row 
exactly through the cell with the maximum value, as this location maximizes the sum of the dynamic 
programming scores of the two halves of the string.  At this point, we can directly fill in part of the optimal 
alignment by following the path this alignment takes along the middle row up to the point where it diverges 
into the top or bottom halves of the table.  

So far we have, thus, identified a small section of the optimal path (which, as pointed above, can be stored in 
linear space) while using only linear space.  We, then, repeat this process by recursing on the two halves of the 
dynamic programming table, at each step reconstructing another small segment of the path, until we 
eventually reconstruct the whole path. Note that at each stage the recursion only needs to focus on the white 
sections of the dynamic programming table as we know that the optimal path will not cross through the blue 
parts.  

While it is clear that this algorithm uses linear space, it is not at all obvious that it is efficient.  To compute its 
runtime, note that at the first stage the runtime is exactly the same as that for the traditional dynamic 
programming approach: O(n m/2 + n m/2) = O(nm).

As we recurse, however, at each stage we halve the runtime as we ignore half of the dynamic programming 
table, leading to the recursion: O(nm + nm/2 + nm/4 + ...) <= O(2 nm) [inequality due to the properties of 
exponential series]. Thus, we can achieve a linear space algorithm without a significant penalty in terms of 
runtime.



 4.3.3 Alignment with bounded error

All the inexact alignment algorithms we have described so far require quadratic run time, irrespective of how 
well sequences match each other.  Can we do better for sequences that match well?  For example, in the 
absence of gaps global alignment simply requires filling the main diagonal of the table, leading to a linear 
algorithm.  To explore the relationship between alignment runtime and the amount of error, let us denote by k 
the numbers of errors we encounter in an alignment.  Assume for now that we know a priori what k is, or more 
realistically, we have set an upper bound on its value (e.g., we are only interested in alignments with fewer 
than k=10 edits).

In this case, we can easily convince ourselves that certain parts of the dynamic programming table do not need
to be filled in. Specifically, reaching a cell that is more than k diagonals away from the main diagonal of the 
table requires us to incur more than k mismatches.  As a corollary, no alignment with fewer than k mismatches 
makes use of those cells and they can be safely ignored (see below)

As a result, our algorithm only has to fill in O(2 k min(n,m)) cells, which leads to essentially linear time 
execution for k << min(n,m).  

Note that is certainly possible that the best alignment found in the 'trimmed' table contains more than k 
differences, thus our algorithm must check this fact before reporting the alignment.

Question: If the best alignment has more than k mismatches, can we still report it as the best alignment of the two 

Figure 10: Banded alignment.  If alignment A has fewer than k mismatches it will be the best 
scoring such alignment.  If A has more than k mismatches then it is possible another alignment 
(e.g., B) would score better, yet such an alignment would not be found by the banded alignment 
algorithm as no cell outside the 2k-width band is computed.



strings?

Note that if we do not know the value of k a priori we can find it using binary search. Specifically, we begin 
with a guess for k and find the best alignment.  If this alignment has > k edits, we repeat the process with 
k'=2k, and so on, until we find an alignment with fewer edits than the current value of k.  We can easily see 
that this algorithm will always find the best alignment in the most parsimonious way (k is never more than 
twice as large as necessary).  

What is the cost of this algorithm, however?  Let us denote by kM, the maximal value of k encountered in the 
algorithm, i.e., the best alignment has less than kM edits (generally between kM/2 and kM edits). Clearly, the 
maximum memory used by the algorithm is O(kM min(n, m)). We can enumerate the steps that took us to this 
point and estimate their computational complexity. Specifically, the runtime can be written as:

O(kM + kM/2 + kM/4 + ... + k) where k is our initial guess.  Otherwise written we have the runtime O(kM (1 + 1/2 
+ ... )) = O(2kM)  (this is derived from simple properties of exponential series)  In other words, despite the 
possibly large number of iterations of the 'guessing' algorithm we only double the runtime compared to an 
algorithm that would have guessed the correct value of k the first time (actually our algorithm may be 4-times 
as expensive as the best algorithm as the correct value of k can be roughly equal to kM/2).

 4.3.4 Landau-Vishkin algorithm

Another approach for computing an alignment of two strings in time (and space) proportional to the actual 
distance between the strings was proposed by Landau and Vishkin (Landau and Vishkin 1986).  This approach 
focuses on the different diagonals within the dynamic programming table – a perfect match represents simply 
a stretch of one of these diagonals (shown in thick lines in the figure below).  The basic idea behind the 
algorithm is to try to find the furthest along each diagonal we can go with a certain number of edits. For this 
purpose, we will record values V(i, d), representing the rightmost end of an alignment that contains i 
mismatches and ends on diagonal d.  

Note that by diagonal we mean all the cells in the dynamic programming table that have the same difference 
between the coordinates in the two strings: d = k – j, where k is the coordinate in S1 and j is the coordinate in S2
(see figure below).  To further clarify the following better, V(i, d) will refer to the coordinate in S1 of the end of 
the alignment.  Note that from the definition of d and V(i, d) we can immediately compute the coordinates of 
the cell ending this alignment to be V(i, d) in S1 (by definition), and V(i, d) – d in S2. 

It should be fairly easy to see that V(i, d) can be computed from nearby values as follows:

V (i , d )= max{ V (i− 1, d )+LCP (V (i− 1, d ) ,V (i− 1, d )− d )(mismatch along d )
V ( i− 1, d− 1)+LCP (V (i− 1,d− 1) , V (i− 1, d− 1)− d )(deletion)

V (i− 1, d +1)+LCP (V (i− 1, d+1)+1,V (i− 1, d +1)− d− 1)(insertion)}



In the equations above, LCP(k, j) represents the longest common prefix of the suffixes k and j of S1 and S2, 
respectively.  

It should be fairly obvious now that computing the V(i, d) values is sufficient for finding the optimal 
alignment.  Specifically, we are looking for the smallest i value that leads to one of the V(i, d) values to reach 
the bottom right corner of the dynamic programming table.   If we fill in the V(i, d) values in increasing order 
of i, we stop once we reach the correct value i = k, and the total number of values filled in is O(nk).  As a result, 
the memory usage is automatically 'tuned' to the divergence between the two strings.

The runtime depends on how quickly we can compute the LCP values.  One approach relies on generalized 
suffix trees – suffix trees constructed from the suffixes of two or more strings (it is easy to see that Ukkonen's 
algorithm can easily construct such trees).  If we construct a suffix tree from strings S1 and S2 the LCP(i, j) for 
suffixes i in S1 and j in S2 is simply the string depth of the lowest common ancestor of the leaves 
corresponding to the two suffixes.  An algorithm due to Vishkin can compute this information in constant time
(more specifically, this algorithm can find the lowest common ancestor of two nodes in any tree), leading to an 
overall O(kn) runtime for our algorithm.

 4.3.5 Parallel alignment

Today's computers have multiple processors, and can also perform fine-grain parallelism (e.g., perform 
arithmetic operations on multiple processor registers at the same time).  In fact, parallelism is key to much of 
the speed-ups we discussed above, as we often assume that operations on a single computer word take a 
constant amount of time, i.e., all bit-level operations are done in parallel.  

A full description of parallel algorithms is beyond the scope of this class, however it is important to note two 
main issues:

1. Any parallel algorithm can be executed in the same amount of time (defined as runtime * number of 
processors) on a serial computer.  This should be obvious as we can have the same processor pretend to
be each of the parallel processors in turn, without needing to account for any additional computational 
time.  As a result, parallelism cannot 'buy' us more than a speed-up proportional to the number of 
processors used.

2. The speed-up (ratio of the serial runtime to the parallel runtime) is limited by the amount of serial time 
spent coordinating between the p processors used.  For a serial runtime of R, the runtime in parallel on 
p processors, R(p) >= R/p, with equality only when there is no communication.  

In other words, parallel algorithms are not a universal panacea, and can only reduce the runtime by a (possibly
large) constant determined by the number of processors used.    This constant improvement can, however, be 
quite important in practice, e.g., it could represent the difference between running a program for one month 



versus one day.  

The dynamic programming alignment algorithm provides nice opportunities for parallelism as the data 
dependencies are quite limited.  Specifically, the three dynamic programming tables for affine gap processing, 
E, F, and G, each rely on information from the adjacent column, same column, and shifted adjacent column, 
respectively, as seen in the figure below.  Entire group of cells can, thus, be computed in a single operation, 
assuming the computer being used allows such parallel operations (most modern processors do), also called 
SIMD instructions (single instruction multiple data).  

Of course things are not quite as easy as outlined here, rather implementing an efficient parallel algorithm 
requires a number of 'tricks' (see (Farrar 2007, Rognes 2011)  for a more extensive description).  First, note that 
when computing the table G, we must identify, for each character in the query S1[i], the score S(S1[i], S2[j]) of 
aligning it to the corresponding character S2[j] in the reference.  At first glance, this lookup cannot be 
performed in parallel.  Given that the alphabet is limited in size (20 letters for amino-acids, 4 for DNA), we can,
however record a table of size O(m |Σ|) which records the substitution scores at each position in the query for 
all possible choices of characters in the reference.  This table can be precomputed at the beginning of the 
algorithm and a single lookup suffices to identify in constant time an entire block of scores. 

A second issue we encounter relates to the idiosyncrasies of the parallel architecture available to us. For 
example, the size of the values stored in the dynamic programming table affects the number of operations we 
can do in parallel. For example, if our processor can perform in parallel integer operations across 128 bits, we 
can process 16 cells at the same time as long as the dynamic programming score can be represented in 8 bits.  If
16 bits are needed, the level of parallelism drops to 8.  

Thirdly, we can run into more issues due to the fact that our algorithm must choose the large value from 
among three possible values.  Such decision branches can affect the ability of the compiler to generate code 
that gets executed efficiently, offsetting some of the speedup that we might be able to achieve.

 4.3.6 Exercises

1. (fitting alignment) Suppose we have sequences v = v1, ... , vn and w = w1, ..., wm, where v is longer than w. 

We wish to find a substring of v which best matches all of w. Global alignment won’t work because it will try 
to align all of v. Local alignment won’t work because it may not align all of w. The problem (called the fitting 
problem) can be formulated as the problem of finding a substring v’ of v that maximizes the score of alignment
s(v’, w) among all substrings of v. Give an algorithm which computes the optimal fitting alignment in O(nm) 
time. Describe both how to compute the score of this alignment and how to compute the actual alignment.

Note: You don’t need to spell out all the details of the algorithm. If you use the traditional dynamic 
programming approach, it is sufficient to specify the initial conditions (what values are written in the first 



row/column of the matrix), where will the score for this best alignment be located in the matrix, and whether 
you use the global alignment recurrence in the algorithm (max value between left, diagonal, and above), or the 
local alignment recurrence that allows the alignment to restart at any location by taking the maximum of four 
values: 0 and the three values mentioned above.

2. Describe how you would modify the dynamic programming alignment algorithm to compute overlaps 
between pairs of sequences provided as input to a genome assembler.  By overlap we mean finding a suffix of 
S1,  S1[k..n], and a prefix of S2, S2[1..l], which align best (in terms of the dynamic programming score) among 
all possible suffix/prefix combinations.  Please specifically address the following points:

a. What are the initial conditions in the dynamic programming table?
b. Where will the answer be found?  
c. What recurrence relations will you use: local alignment or global alignment (no need to actually 
write them out)?

Note: Assume all overlaps are 'proper', i.e. none of the sequences is contained within another one.  Also 
assume we only care about overlaps between "forward" versions of the sequences (no need for reverse 
complements).

3. Bacterial gene finders have difficulty identifying the correct start codon of a gene though the stop codon is 
always correctly determined. Assume you are given a collection of protein sequences determined 
computationally from predicted genes and want to align these sequences to each other, accounting for possibly
incorrect predictions of gene starts.  Specifically, you want the ends of the genes to be aligned to each other, 
however you are willing to ignore mis-alignments at the beginning of the sequences. How would you modify 
the dynamic programming alignment algorithm described in class to compute such alignments.  Specifically:

a) What are the values stored in the first row and column of the dynamic programming table?
b) What are the recurrence equations?
c) Where will the answer be found in the dynamic programming table?
d) What is the stopping condition for the backtracking procedure?

4. The partial order alignment (POA) technique describes a multiple sequence alignment as a directed acyclic 
graph where the nodes represent sections of DNA shared by two or more sequences and the edges of the graph
connect sequence segments that occur in the same sequence.  For example, in the figure below, the DAG 
represents the alignment of sequences ACGAATCAGGGTACAGGCTAGTTCGACCT and 
ACGAATCAGACGACCGTTCGACCT.  The classical dynamic programming alignment algorithm can be 
extended to allow the alignment of such a DAG against the sequence of a genome.  Describe the details of such
an approach: setup of the dynamic programming table, initial conditions, and the recurrence equations.  

Hint: The optimal alignment will follow one of the paths in the DAG.

5. Homopolymers – stretches of DNA in which a single base is repeated (e.g. AAA...) - complicate genome 
sequencing and frequently lead to sequencing errors.  The most common error leads to an incorrect number of 



bases to be "read" by the sequencing machine.  Assume you want to account for this fact when you align DNA 
sequences to each other, specifically, you want to allow gaps in the alignment when necessary to align 
homopolymers of differing lengths.  In all other cases the gap penalties will follow the standard edit-distance 
approach.  Describe how you would modify the "traditional" local sequence alignment algorithm (without 
affine gaps) to allow the correct alignment of homopolymer regions.  For simplicity, assume the only 
homopolymers allowed are repetitions of nucleotide A.  (Hint: think affine gaps).

6.  We described how the Aho-Corasick algorithm can be used to compute an exact alignment with "don't care"
symbols.  Describe an algorithm that can perform inexact alignments using "don't care" symbols.  (Note: a 
"don't" care symbol '*' is a character that can be matched to any other character without a penalty).  Will your 
algorithm allow a '*' to be aligned to a gap?

7. Assume we want to compute high-quality ungapped local alignments of two strings.  Do you still need a 
dynamic programming table?  Describe an algorithm that finds the maximum scoring ungapped local 
alignment.

 4.4 Sequence alignment heuristics

The algorithms described above are the most efficient approaches for inexact alignment in the general case. In 
other words, if our goal is to find the best scoring alignment between two strings, irrespective of how good this
alignment is, we cannot beat the quadratic runtime of the basic algorithm.  For most applications this runtime 
is simply prohibitive – imagine, for example, aligning several million 100bp sequenced reads to the entire 3 
billion base-pairs in the human genome, or aligning one entire 3 Mbp bacterial genome against a collection of 
other 10,000 such genomes.  To efficiently perform such alignment tasks we must relax our goals, by focusing, 
for example, on just the highest quality alignments, or even give up on finding the best scoring alignment.  In 
this section we will discuss some such heuristic approaches.  Note, however, that such heuristics must be used 
with care and only when the biological application is compatible with the relaxed assumptions of the heuristic 
approach.  Thus, before you propose a 'smart' new heuristic that outperforms other alignment approaches try 
to fully understand the needs of the biologist users.

 4.4.1 Exclusion methods

Exclusion methods attempt to restrict the search space to just regions where good alignments are likely to be 
found.  Assume, for example, that we are interested in finding an alignment with fewer than k edits of a 
pattern P of length m against a text of length n.  Baeza-Yates and Perleberg observed that if we break P into k+1
equally-sized blocks of size m/(k+1), at least one of these blocks contains no edits, i.e., the block matches 
perfectly against the text.  As any good alignment satisfies this property it suffices to focus on the parts of the 
text that contain exact matches with the pattern of length at least m/(k+1). For each of those locations we can 
find the optimal alignment in O(m2) rather than O(mn).

To find the locations where the pattern has an exact substring match to the text one can use any of the exact 
string matching algorithms we discussed earlier in this class. Specifically:

• The pattern can be split into k+1 equally-sized blocks, which are then searched against the text using 
Aho-Corasick.

• The longest common subsequence matching between the pattern and the text can be found (as well as 
all matching substrings longer than m/(k+1) ) using a suffix tree constructed on the text.

• An index of all strings of length m/(k+1) (also called k-mers) can be constructed from the text allowing 
us to quickly find all k-mers that are found in both the pattern and the text.



The latter option warrants further discussion.  This type of index is called an inverted index as it maps content 
(k-mers) to their location in the text.  For each k-mer it lists all indices in the text where that k-mer is found.  
Such indices can be quite efficient as they can be organized as a hash table with effectively constant access time
per k-mer.  The efficiency, however, depends on the size of the k-mer (the shorter the k-mer the more efficiently
the index can be stored), and the level of repetitiveness of the genome (the more times a k-mer is found, the 
less efficient is the index). 

Case study: Blast

The Blast program is one of the most widely used and heavily cited programs in bioinformatics.  It is 'simply' a
database search program that searches individual sequences against a large database.   We have already 
discussed how Blast uses statistical arguments to distinguish 'real' matches from random alignments.  That 
discussion was predicated on having an alignment score between a query string and the database.  To identify 
putative alignments and their scores, Blast constructs a k-mer index for the query, i.e. it stores all k-mers of a 
certain length (k=3 for proteins, k=11 for DNA by default) and their location in the query.  For each k-mer Blast 
also records the 1-off neighbors of the k-mer (e.g., in addition to ACA it would also store TCA, GCA, CCA, as 
well as ACT, ..., etc.).  The algorithm then attempts to find exact k-mer matches between the database and the 
query, and performs a local dynamic programming alignment around each of the matches found to identify 
high scoring segment pairs (HSPs), which are then evaluated statistically.  Note that the exact matches are 
scored according to the selected scoring matrix, and only k-mer hits of a sufficiently high score are considered.

The local alignment procedure starting from a k-mer match continues on either side of the hit and stops once 
the score drops significantly.

Note that Blast is not guaranteed to find the best match between a query and the database – assume, for 
example that it compares two versions of a gene's DNA sequence, and these versions differ in the third 
position of their codons while still encoding the same protein.  In these sequences one will not find any exact 
match longer than 2 bp and the biologically correct alignment will be missed by blast (which uses k=11 for 
DNA sequences), even though it tries to account for mismatches in its search.  At the same time, using a 
smaller value of k, e.g., k=5 (after accounting for one mismatch we should be able to find matching k-mers in 
this case) might lead to too many exact matches requiring a prohibitive amount of time to compute all 
alignments and find the best one.

This trade-off between efficiency and sensitivity (ability to find the correct alignment) is key to most heuristic 
choices in alignment. 

Blast involves several tradeoffs.  First, the more word hits, the slower the algorithm (runtime is roughly 
proportional to the number of words that match between the query and the database).  The expected number 
of word hits depends on word length and score threshold, and an intuition of this dependence can be obtained 
from an analysis of the statistics of alignment scores (see Section 4.2).  At the same time, increasing word 
length or score threshold increases the chance that an alignment may be missed.

Note that the original Blast used ungapped extensions of the exact matches – something that can be done in 
linear time.  To allow for gapped alignments, Blast uses a second score threshold which selects ungapped 
extensions that are 'promising' – once an ungapped alignment of a high enough score is found, the seed hit is 
extended with a gapped alignment procedure (Smith Waterman, see Chapter 4).  This threshold is selected so 
that, on average, only 1 in 50 hits would trigger the gapped extension procedure.

Another heuristic used by Blast requires two hits to exist on the same diagonal (rather than one longer hit) 
before an extension is performed. This heuristic is similar to the one used by the FASTA program (Pearson and 
Lipman 1988). 



 4.4.2 Expected number of anchors

Exclusion methods, as described above, are perhaps unnecessarily conservative.  By choosing the length of an 

exact anchor to be ⌊ m
e+1

⌋  we can ensure that no match of a pattern of length m with at most e mismatches 

(errors) will be missed. However, for small values of m or large values of k, the exact matches we look for may 
yield too many putative matches thereby offsetting the performance gains of the approach.  The worst case 
scenario implied by this approach – that the errors are equidistant along the pattern – may not be that 
common.  Instead, we could look for longer anchors in the hopes that with high enough probability a good 
alignment would contain a long enough error-free stretch.  We can estimate this probability more formally as 
follows.  

Just as before we will assume the length of the pattern is m.  We will also define λ to be the error rate in the 
alignment we are looking for.  The expected number of errors within the pattern is e= λ m .  Given these 
parameters, the expected number of error-free anchors of length k within the pattern is (m− k+1)(1− λ)k .  
This formula simply multiplies the number of possible anchors with the probability that a string of k 
consecutive positions do not contain any error.   

A similar analysis can be applied to estimate the number of error-free windows of length k or longer within the
pattern.   The expected number of error-free anchors is simply the expected length of such error-free windows. 
The number of error free windows starting with an error within the pattern is simply e, and we also have to 
account for a possible error-free window before the first error.  Furthermore, the probability of each window 
being longer than k is simply λ (1− λ)k , or the probability of an error followed by k or more exact matches.  
Putting these together, the expected number of error free windows is (1− λ)k+eλ (1− λ)k= (1+eλ )(1− λ)k . 

To see the discrepancy between the worst case and average case scenarios, let m=100 and λ=0.04.  The worst 
case analysis suggest we should look for anchors of length 20, assuming the four errors in the pattern are 
equally spaced.  This is clearly overly conservative as on average we expect to see 29 anchors of length 20 at 
this error rate.  In fact, even for an anchor of length 50 (half a read) we expect that on average 4 such anchors 
could be found within a pattern.

Analyses such as the ones outlined above can be extended to look at multiple patterns.  In DNA sequencing 
experiments one usually generates tens of millions of sequences.  Depending on the question being asked, it is 
not necessary that all the reads be aligned, and we could use a more aggressive choice for the length of exact 
matches we are looking for.  Of course, as we design such a strategy we may want to estimate whether the 
choice of anchor length is not too conservative, thereby eliminating too many of the sequences. To do so, we 
want to estimate the expected number of sequences of length L that contain at least m exact matches of length 
k, assuming we are starting with N sequences.  

We first need to estimate the probability that a sequence contains at least m matches of length at least k.  As we 
discussed above, each match starts with an error (probability λ) followed by at least k matches ( (1− λ)k ).  
As we are looking for m such patterns, the probability becomes λm(1− λ)mk .  Finally, we need to take into 
account the number of ways in which the basepairs not included in these exact matches are distributed within 
the sequence.  There are L – mk such characters that are distributed among m + 1 buckets (inter-exact alignment

spaces), or a total of (L− m(k− 1)m ) configurations, leading to the per-sequence probability of

λm(1− λ)mk(L− m(k− 1)m ) .  By linearity of expectation, the expected number of sequences with at most m k-

mer matches is N λm(1− λ )mk(L− m(k− 1)m ) .



Note: Arithmetic errors likely made their way in the math above.

 4.4.3 Spaced seeds 

Let us explore a bit more the example given above, where we try to align two versions of a same gene, e.g:
g1:  AATCAAGGUAAATTA

g2:  AACCAGGGAAAGTTG

prot: N  Q  G  K  L

Clearly no 11-mer matches exactly or even with one mismatch between the two versions of the gene and this 
alignment would be missed.  We can, however find the alignment using a special type of seed called a spaced 
seed, where we allow certain positions to mismatch.  Specifically, we will represent the seed as a string of 1s 
and 0s, and require that the characters aligned to a 1 match each other.  We will compare two seeds of length 
(also called width) 11: 11111111111 (the original 11-mer) and 11011011011 (an 11-mer that allows 'wobble' 
basepairs).  Let us see how they do in the example above:
g1:  AATCAAGGUAAATTA
     11111111111
g2:  AACCAGGGAAAGTTG

prot: N  Q  G  K  L

g1:  AATCAAGGUAAATTA
     11011011011
g2:  AACCAGGGAAAGTTG

Note that the contiguous seed mismatches (positions marked with red) but the spaced seed (containing 0) can 
accommodate the mismatches and find the correct alignment.  In other words, the spaced seed appears to be 
better – it has the same width yet finds a match missed by the contiguous seed, and also only requires us to 
look at 8 characters (the weight of the seed) instead of 11.  

We can formalize this property by defining the sensitivity of a seed to be the probability that at least one seed 
matches between two aligned strings.  The sensitivity is specific to the similarity between the strings, defined 
by the fraction of identities in the alignment.  Note that we can think of the alignment as simply a series of 1s 
and 0s, where 1s indicate that the corresponding characters match perfectly (we ignore gaps here).  If the rate 
of identities is p, we expect 1s to occur in the alignment with probability p.  

We can get a bit of an intuition on why spaced seeds are better by observing that we can compute the expected 
number of seed matches between the two strings as follows.  Let L be the length of the alignment, and W be the
width of the seed, and p the identity rate (66% in the case above – 1 in 3 letters mismatch). There are L-W 
possible placements of the seed in the alignment.  For the exact seed, the probability that all 11 positions match
identical characters in both strings is simply p11=(0.66)11 = 0.0103.  For the inexact seed we only need 8 positions 
to match, leading to p8 = (0.66)8 = 0.0360.  Given that L-W is the same for both seeds, the inexact seed yields 
more expected hits in the same alignment range and thus has a higher likelihood of finding the correct 
alignment.

To formally compute the sensitivity of a seed, we encode possible alignments as strings of 0s and 1s 
representing the position of the exact matches and mismatches.  We define the sensitivity of a seed as the 
probability that the seed is compatible with an alignment, i.e., that the seed (represented as a string of 0s and 
1s) aligns (all 1s in the seed must be aligned to 1s in the alignment) to a substring within the corresponding 
string representing the alignment.  To compute this probability we will rely on dynamic programming, as 
follows.  

First, we define f(i, b) to be the probability that the seed matches a prefix of length i of the alignment that ends 
in the binary string b (of length equal to the width of the seed).  The probability of the seed matching an 



alignment of length L is simply sensitivity(seed )=∑ all b
f (L , b)∗ p(b) where p(b) is the probability of each

string of length b.  The latter can be computed as described above from the actual string b and the probability 
of match p.

In other words, the dynamic programming table f(i,b) focuses on some prefix of possible alignments, and 
checks whether the seed matches the suffix of this prefix.  If S = b, f(i,b) = 1 as clearly the seed matches all 
alignments that end in b.  If S <> b, we need simply use the recurrence equation: 

f(i,b) = f(i-1, 0b') (1-p) + f(i-1, 1b') p

where b' is the string b without its last bit.  Essentially we are shifting along the possible alignment strings and 
checking again if we have a match with the seed.  The values for f(W, b) are trivially set to 0 if S <> b and 1 if S =
b.

Note that the dynamic programming approach outlined above essentially enumerates all possible alignments 
of length L and computes the proportion of these alignments that contain our seed.  The runtime of this 
algorithm is exponential in the size of the alignment O(2W2L-W) (the first term is the enumeration of all words of
length W, while the second one enumerates all the extension of these words to the total length of the 
alignment).

An example is shown below for the seed 1101 and alignments of length 8 ending in an exact match of 4 
characters (1011).  In bold are the locations where the seed if found to match the alignment. Assuming p = 0.5 
(equal likelihood of matches/mismatches) f(L, 1011) = 8/16 (eight of the 16 different equally likely alignments 
are compatible with the seed – shown in bold and underlined characters). 



Additional intuition:

Note that any specific spaced seed is unlikely to be fully sensitive (any good alignment contains a matching 
seed), with the exception of trivial corner cases (e.g., exact matches must contain other exact matches).  As a 
result, algorithms that rely on spaced seeds use multiple such seeds in order to increase the chances of finding 
an alignment.  What is important in this case is that the seeds are independent such that together they cover a 
large fraction of the space of possible alignments.  Examining the example above should provide you with the 
intuition that independent seeds do not overlap each other well, i.e., as we shift the b box during the execution 
of the algorithm, the boxes that match a particular seed occur in different parts of the tree.  While computing 
the sensitivity of a seed is highly expensive (as we have seen above), this simple observation can lead to 
effective and efficient algorithms for constructing seed sets – see Ilie and Ilie (Ilie and Ilie 2009). 

Historical note:

The concept of spaced seeds is closely related to the concept of locality-sensitive hashing.  In general terms, a 
locality-sensitive hashing function is 'compatible' with some definition of distance between objects.  The closer 
the objects are (e.g., the more similar two sequences are), the more likely it is that the hash function will put 
these objects in a same bucket.  One can easily see that selecting a set of positions  from a sequence (the 1s in 
the example above) and mapping the sequence to the bucket corresponding to the base-pairs such identified is 
a hashing function, and that the more similar two sequences are, the more likely it is that they will agree over 
some subset of their positions.  Such ideas were initially introduced by Buhler (Buhler 2001) before the concept
of spaced seeds was developed, in part by Li and Ma (Ma, Tromp et al. 2002).  The statistical aspects of spaced 
seeds were studied by Keich et al. (Keich, Li et al. 2004).

 4.4.4 Inexact seeds

A concept similar to spaced seeds was introduced by Ghodsi and Pop (Ghodsi and Pop 2009) and also 
independently by Kärkkäinen (Kärkkäinen and Na).  The main limitation of spaced seeds is that they do not 
tolerate insertions and deletions, thus their sensitivity is inherently limited to finding alignments where most 
differences are due to substitutions.  As we have seen so far, handling insertions and deletions can be quite 
expensive, while exact matches can miss too many alignments, or lead to too many options that need to be 
explored.  A trade-off between these two extremes can be obtained based on the following simple lemma:

Lemma: For any l < L, an alignment of length L with k edits must contain a sub-alignment of length l with at most

⌊kL
l
⌋ mismatches. 

At the extreme, this lemma is equivalent with the Baeza-Yates observation that any alignment with k edits 
contains an exact match of length l = L/(k+1).  The lemma is easy to prove by observing that a path through the 

dynamic programming algorithm representing alignment L cannot always exceed ⌊kL
l
⌋ mismatches in all of

its subpaths of lengths l.

 4.4.5 Whole-genome alignments: chaining algorithms

Most of what we presented above assumes that the strings being aligned are fairly similar to each other (for 
biological reasons).  This is generally true for short strings (e.g., proteins or genes) but is no longer a valid 
assumption when aligning long DNA segments, such as whole genomes.  A global alignment of such long 
sequences is no longer biologically relevant due to possible large-scale changes between even closely related 
genomes, such as insertions/deletions of large segments of DNA (e.g., antibiotic resistance cassettes), or large-
scale rearrangements (e.g., large segments that are duplicated or inverted or swapped).  To meaningfully align 
such large segments we simply focus on constructing a collection of high-quality local alignments from which 



we can infer the relationship between the sequences being aligned.  For example, the figure below (from 
(Eisen, Heidelberg et al. 2000)) shows an alignment of two related genomes from the genus Chlamydia which 
highlight large-scale inversions occurred in these genomes since they diverged.  In this case, the inversions 
occur around the origin and terminus of replication due to 'errors' in the mechanism used by bacteria to 
replicate their DNA.

Note that there are many possible local alignments and we'd like to identify an 'optimal' subset that best 
explain how the genomes relate to each other.  A similar issue also occurs, for example, when we use a filtering
approach to find a set of exact matches and wish to further explore sections of the alignment space where these
matches indicate a good alignment may exist.

The main question here is how we define the “goodness” of a set of local alignments.  To gather a bit of 
intuition, see the picture below, representing a dynamic programming table. The thick lines are good local 
alignments (be it exact or inexact).  Just by visual inspection, it appears that there is a good alignment in the 
middle of the table – there simply is a large density of local alignments around the same diagonal.  There are 
different ways of 'completing' these local alignments into global alignments (the thin lines).  Which one of 
them is better?

To formalize, we will define the 'goodness' of a chain of alignments to be simply the sum of the scores of the 
chained alignments, as long as the alignments are 'compatible'.  By 'compatible' we mean that the alignments 
are not allowed to overlap.  We can also add a score term (or penalty) related to the gap between the alignment
(chaining across large gaps in the alignment could be penalized, for example), however we'll leave the details 
of that implementation as a detail.

One dimensional chaining

To understand how we can find the best chain, we'll first focus on a 1-dimensional version of this problem.  



Specifically, assume you have a set of intervals on a line (see below) and you want to find the set of non-
overlapping intervals that has maximum weight, where for each interval i we define w(i) to be its weight.

The algorithm for computing this maximum weight 'cover' (not to be confused with the traditional set theory 
max cover problem) follows the dynamic programming paradigm. 

First, we define V[i] to be the weight of the maximum weight set of non-overlapping intervals ending with 
interval i (we assume the intervals are ordered from 1 to n by their left most coordinate).  A simple (and 
inefficient) dynamic programming approach would iterate over all i values in increasing order.  For each i this 
algorithm sets V [ i ]= max j<i ,interval j ends beforeinterval i(V [ j ]+w(i)) . In other words, at each iteration we check all 
prior intervals which do not overlap the current one and choose the one with maximum score.  It is easy to see 
that this algorithm runs in O(n2). 

A more efficient algorithm can be obtained by observing that we do not need to check all prior intervals, just 
the one with the maximum score that ended before the current interval started.  Specifically, the algorithm will 
record, as above, the score V[i], as well as a value MAX representing the maximum V[j] over all intervals j that 
ended before the current position.  The ends of all intervals are first sorted, keeping track of whether each 
coordinate represents a left or a right end of an interval.  Then the algorithm proceeds by filling in the V[i] and 
MAX values as follows:

At the end of the algorithm, the value MAX will contain the weight of the maximum weight set of non-
overlapping intervals.  The actual set of intervals can be found through backtracking by recording a bit more 
information.

The correctness of this algorithm is easy to see – MAX is always set to the weight of the maximum chain of 
intervals that has been completed (the rightmost position of its rightmost interval was seen), as MAX is only 
set once we encounter the right end of an interval. In addition, when setting V[i], the current interval is 
implicitly compatible (non-overlapping) with the interval embodied by MAX as the latter's rightmost end 
occurred before the left end of the current interval (V[i] is only set at the left end of an interval).

The runtime of the algorithm is dominated by sorting the interval ends, yielding a runtime of O(n log n).

foreach interval end e from left to right (in increasing order of coordinates)
     if (e ==l(i)) # if e is the left end of interval i
          V[i] = MAX + w(i)
     end if
     if (e == r(i)) # e is the right end of interval i
           if (V[i] > MAX)
              MAX = V[i]
          end if
     end if
end foreach



Two dimensional chaining

The first dynamic programming algorithm described above can be easily extended to two dimensions. Like in 
the 1D case we can visit the intervals (which are now rectangles bounding the 'good' diagonals) in order of 
their x- or y-coordinates, and check all compatible intervals to extend a current chain.  Like before, V[i] is the 
weight of the maximum weight chain that ends with rectangle i.  In 2-D, the concept of compatibility is a bit 
more complicated – the upper-left corner of the current rectangle must occur to the right and below the lower 
right corner of some previous rectangle in order to be able to chain them together.

In the figure above, for example, interval 4 is only compatible with interval 1, while interval 5 is compatible 
with all prior intervals.  Note that we could also solve this problem by simply building a graph comprising all 
the compatible interval links, then find a maximum weight path in this graph, again with the same O(n2) 
runtime. 

Converting the more efficient algorithm to the 2-D setting is a bit more complicated.  Let us assume that we 
will proceed along the x axis.  We will follow a same procedure as before, visiting every interval end in order 
to update the value of the chain ending with the current interval (V[i]).  At each position, however, we will 
have to take into account more than just one maximum value, tracking the vertical placement of the intervals.

Specifically, instead of a single value MAX, we will maintain a vector MAX that contains the tuple (b[i], V[i]) 
for every interval i in this vector, where b[i] is the bottom coordinate of the interval.  We will maintain this 
vector sorted by b[i]. 

While visiting the intervals along the x axis, as before, we distinguish two situation:

1. If the current position is the left end of an interval i

We find the position of t[i] (the top coordinate of the interval) within MAX, and identify the lowest 
interval j with b[j] > t[i]. By definition, intervals i and j are compatible, therefore we can set V[i] = V[j] + w(i).  
Note that this step requires O(log n) time as we need to perform a binary search to find the value of j.

If no such j exists, we can simply set V[i] = w(i).

2. If the current position is the right end of an interval i

Now we must update the vector MAX.  We first search for b[i] within MAX, and let j be the lowest 
interval with b[j] >= b[i].  

If V[i] < V[j] we terminate this round.

Otherwise, we insert (b[i], V[i]) into the MAX vector.  We also remove from MAX all intervals k with 
b[k] < b[i] and V[k] < V[i]. In other words, we make sure that all intervals following i in MAX have V values 
larger than that of i.

Note that this algorithm can be executed in O(n log n), partly due to the initial sorting operation, and partly 
due to the fact that at each of the n iterations we perform a O(log n) binary search.

1

2 4

5

3

6



The correctness is a bit harder to prove than before.  First, note that the MAX vector is always sorted by both b 
(by construction) and V (due to the pruning procedure in step 2 above.  Thus, both the pruning and the 
insertion can be done in O(log n) time through binary search.   Second, observe that maintaining the MAX 
vector sorted by V ensures that at each left end we will always pick the best compatible interval to extend.  
Specifically, in the figure above, when we reach interval 5 MAX could contain all four prior intervals, sorted by
their bottom coordinate (1, 2, 4, 3).  To compute V[5] there is no reason to check all intervals – is suffices to pick
interval 3 as it has the highest V value and is compatible with interval 5.  Assume, however, that interval 4 had 
a higher V value than 3. In that case interval 3 would never be chosen by any subsequent interval as all 
intervals compatible with 3 are also compatible with 4 which has a higher value (at the point in time when 
both 3 and 4 are in the MAX vector).  Thus, interval 3 can be safely removed from the MAX array, preserving 
the property that this array is sorted by both b and V. 

Note that it is not sufficient to just store the maximum prior interval and we truly need the entire MAX array.  
Assume that, as described before, interval 3 has the highest value.  When reaching interval 6 we cannot use this
value when computing V[6] as the two intervals are not compatible, and we must use an earlier 'suboptimal' V 
value which may, however, eventually lead to the maximum weight chain.

Note: In the description above we use 'upper' and 'lower' to match the picture and, thus, assume the 
coordinate (0, 0) is in the bottom left corner of the matrix.  In a traditional alignment approach the (0, 0) 
coordinate is in the top left corner and the math would have to be modified accordingly.

Summary

To summarize, when aligning long genomes we start by finding good local alignments, then chain these into 
either a global alignment (as described above), or simply longer local alignments (using a local version of the 
algorithm described above).  Once the alignments are chained, we can fill in the gaps between them using the 
traditional global alignment approach.

Historical note

The program MUMmer developed by Art Delcher (former scientist at the CBCB) introduced the idea that the 
local alignment 'guides' should be Maximal Unique Matches (MUMs) (Delcher, Kasif et al. 1999) – longest 
matching segments that are unique in both of the strings being aligned.  Adam Phillippy (former UMD grad) 
applied the chaining algorithm to find inexact matches around the MUMs found by MUMmer (Delcher, 
Phillippy et al. 2002).  He implemented the O(n2) version since it is easier to implement and debug and the 
improved performance of the O(n logn) algorithm was not necessary in typical applications.  The MUMmer 
package was originally developed when Art worked at Celera Genomics.  Open-source suffix tree code from 
Stefan Kurtz allowed the package to be released open source (Kurtz, Phillippy et al. 2004).

 4.4.6 Exercises

1. For a sequence of n integers, the longest increasing subsequence problem (LIS) represents finding the 
longest subsequence in which all integers are listed in increasing order.   For example, for string:

5,3,4,9,6,2,1,8,7,10
one possible answer is:

3,4,6,8,10

a. Describe a simple dynamic programming algorithm to compute the longest increasing 
subsequence in O(n2).  

b. Can you see any similarity between the LIS problem and the chaining algorithms described 
in the course?  Indicate whether the 1-D or 2-D chaining algorithms is most similar to the 
LIS problem, and sketch a mechanism for solving the LIS problem in O(n log n), assuming 



you already have code that can compute the optimal solution to the chaining problem.

2. You are trying to find the placement of sequences of length 100 along the human genome (3 Gbp), allowing 
for at most 4 mis-matches, however you do not want to use Smith-Waterman directly. Instead you will use an 
exact matching algorithm to find good candidate matches then extend these with Smith-Waterman.  What is 
the length of the exact match seeds you will use in order to guarantee you that no correct alignments are 
missed?

3. You are given two strings of integers, e.g.:

S1=  1  7  5  3  2  8  9
S2=  14 4  1  3  6  5  4

Assume you partition these strings into the same number of sections. Sum up the numbers present in each 
section of each string S, and replace the string with a new (possibly shorter) string S' representing the sums of 
its parts.  For example, if S1 is partitioned: | 1 7 5 | 3 2 | 8 | 9 |, you would replace it with the string: S1' = 13 5 
8 9.  Compare the strings S1' and S2' by summing up the squares of the differences between corresponding 
numbers (remember, the prime strings have the same number of integers because the original strings were 
partitioned into the same number of sections).  

The goal is to describe a dynamic programming algorithm that computes the optimal way of partitioning the 
strings, i.e. the approach that minimized the sum of the squared differences between the primed strings.  

For example, for the strings shown above a possible solution is:

S1= | 1  7  5 | 3 | 2  8 | 9 |
S2= | 14 | 4 | 1  3  6 | 5  4 |
S1'=  13  3  10  9
S2'=  14  4  10  9

    Diff=  1   1   0  0
    Dist=  12 + 12 = 2

Additional constraints: each string must be split into two or more sections, and none of the sections can be 
empty.

Hint: Try to think in terms of the spaces between numbers, instead of the numbers themselves, i.e. possible 
locations of a "cut" defining a subsection of a string. Try to determine how to pair up cut-points between the 
two strings.  



 5 Multiple sequence alignment

In biology we are frequently faced with the problem of aligning multiple sequences together, e.g. we have 
managed to extract the sequence of a gene of interest from multiple organisms, and want to find out how these
different versions of the sequence relate to each other.   

 5.1 Introduction to multiple alignment

Specifically, we want to create a matrix where each sequence is represented as a row, and each column 
represents the alignment of characters from the original sequences, also including gap characters as necessary.  
Note: we generally require that at least one character in each column is not a gap.
Seq1 ACC-AGTGA-CT

Seq2 -CGTAGCGA-CT

Seq3 ACC-AGTGT-CT

Seq4 ACGTAGTCATCT

Unlike the pairwise sequence alignment problem, the multiple alignment problem is a bit harder to formalize. 
A commonly used theoretical framework states the problem as follows:

Multiple Alignment Problem.  Given a set of n sequences s1 .. sn, find the multiple alignment M that 
minimizes the sum of the pairwise distances between these sequences: ∑ si , s j∈ S

d M (s i , s j)

dM(si, sj) is the distance between sequences si and sj as implied by the multiple alignment M, i.e., the sum of the 
distances between the characters of the two sequences that are aligned to each other in the multiple alignment. 
Generally, alignments between gap characters are assigned score 0. The score of alignments between 
individual nucleotides or amino-acids depends on the specific context: in protein alignments the scores can be 
derived from the BLOSUM matrix scores, while in phylogenetic analysis of nucleotide sequences, the 
alignment scores are determined by an appropriately defined evolutionary model.

Note that dM(si, sj) is generally larger than D(si,sj) - the optimal pairwise distance between two sequences (as 
defined by the pairwise alignment problem discussed earlier in the class).

The Multiple Alignment Problem can be "easily" solved through an extension of the dynamic programming 
algorithm for pairwise sequence alignment.  The intuition is to extend the V(i,j) values from the 2-sequence 
context, to V(i, j, k) for 3 sequences, etc.  The resulting algorithm runs in O(Ln) where L is the length of the 
aligned sequences, and n is the number of sequences.  Clearly, this algorithm is impractical, though some run-
time improvements can be obtained by carefully pruning the dynamic programming table.  

In general, the Multiple Alignment Problem is NP-hard, leading to the need for heuristic approximation 
algorithms.

 5.1.1 Star Alignment

One such algorithm is called Star Alignment – deriving its name from the fact that the multiple alignment is 
constructed by aligning all the sequences to a same "center" sequence.  The alignment process is called 
"progressive alignment" and proceeds as follows:

1. Construct alignment of sequence 1 with the center sequence (using standard pairwise alignment)

2. Construct alignment of sequence 2 with center sequence (using standard pairwise alignment).  Any 
gaps inserted within the center are propagated to the already constructed alignment with sequence 1.

3. repeat 2 until all sequences have been aligned



Note: the implementation can be a bit tricky as you need to avoid having spurious gaps inserted in the 
alignment – e.g., if two sequences both lead to the insertion of a gap at the same location in the center 
sequence, the alignment algorithm should ensure a single gap is inserted (rather than two adjacent gaps).

Choice of the center sequence. For reasons that will become apparent below, the center sequence sc is chosen 
to be the sequence that minimizes the equation

∑ i≠ c
D(s i , sc)

over all possible choices of sc.

Theorem: If the distance between sequences satisfies the triangle inequality, the star alignment has a score at 
most 2 * OPT, where OPT is the score of the optimal multiple alignment.

Proof:

Let S* be the "sum of pairs" score of the star alignment.

S star=∑ i≠ j
d star(si , s j)≤∑ i≠ j

(D(s i , sc)+D(s j , sc))= 2(k− 1)∑ i
D(si , sc)

where k  is the number of sequences and dstar is the distance implied by the star alignment.  The first inequality 
is due to the triangle inequality – each pairwise comparison between two sequences can be bounded by the 
longer 'path' passing through the chosen center sequence.  The second equality requires a bit of counting – 
there are k (k – 1) pairs of distinct sequences, and for each of them we compute D(si, sc) twice.

Let OPT be the score of the optimal alignment.

OPT =∑ i≠ j
d OPT (s i , s j)=∑ j∑ i

d OPT (si , s j)≥∑ j∑ i
D(si , s j)≥ k∑ i

D( si , sc)

The first equality simply transforms the pairwise sums into a collection of star alignments with a different 
sequence (j) as the center. The inequality is due to the fact that the pairwise distance between two sequences in 
the optimal alignment is at most as good as the optimal pairwise alignment between the sequences.  The final 
equality is due to the fact that the star with the center sc obtains the best score from among all possible choices 
of center.

Combining the two equations above we get S star

OPT
≤ 2− 2

k
<2 , i.e., the star alignment is at most twice as bad 

as the optimal alignment.  We can also say that the star alignment achieves a 2-factor approximation.

 5.1.2 Steiner and consensus string

Let us spend a bit more time on the alignment problem, at the conceptual level (not much math following 
here).  Above we came up with an alignment approach that picked a special string, the center, to guide the 
alignment. This center string is one from among the strings being aligned.  What if we could pick another 
string such that the score of the star alignment for this string is optimized?  This string (denoted T in the 
following) is called the Steiner string.  For this string, ∑ i

D (si , T ) is minimized over all possible choices of 
T.  In some sense you can get the intuition that an alignment built around T would have a better score than that
built around another choice of center.  Also note that this string T can at a very broad level be viewed as a way 
to summarize the alignment (though more precise ways of summarization will be described below).  This 
string at some level embodies the commonality between the different strings being aligned.

Another way of summarizing an alignment is to construct a consensus string. Specifically, for each column in 
the alignment we pick the letter that minimizes the distance from all the other letters in the alignment 
(essentially a Steiner nucleotide or amino-acids).  The resulting string is the consensus string (see below)



Seq1 ACC-AGTGA-CT
Seq2 -CGTAGCGA-CT
Seq3 ACC-AGTGT-CT
Seq4 ACGTAGTCATCT
Cons ACCTAGTGA-CT

Note that for large enough alignments of similar enough sequences, the consensus string simply comprises the 
most abundant letter in each column (the sum of distances contains many zeroes).

It is not immediately obvious but there is a connection between the consensus string and the Steiner string – 
specifically, the consensus string of the optimal alignment is actually the optimal Steiner string.   Needless to 
say, finding this string is NP hard.

Nonetheless, the consensus sequence of a multiple alignment (not necessarily the optimal one) is commonly 
used in practice as a way to summarize the alignment, e.g., in the context of progressive alignment (sequences 
are iteratively aligned to the consensus sequence constructed so far).

 5.1.3 Tree-guided alignment

Neither the optimization problem implied in the definition of the multiple alignment problem, nor the 
approximation provided by the star alignment have a biological interpretation.  As a corollary, the resulting 
multiple alignments may not capture interesting biological phenomena.  A more "biologically meaningful" 
approach to multiple alignment relies on the construction of a guide tree that, intuitively, captures the 
evolutionary relationship between the sequences being aligned.  The guide tree stores the sequences at its 
leaves, and the progressive alignment approach described in the context of the star alignment can be modified 
to allow sequences to be merged together in a bottom-up fashion into a single multiple alignment.  

Virtually all "popular" multiple alignment programs rely on this paradigm.  Two heavily used programs are 
ClustalW (Thompson, Higgins et al. 1994) and Muscle (Edgar 2004). 

 5.1.4 Multiple alignment of genomes

The problem: so far we've discussed global multiple alignment – the sequences have to be aligned end-to-end.  
This approach simply doesn't scale to whole genomes. Also, whole genomes have rearrangements, events that 
are not captured in the typical edit-distance alignment algorithms.  

Example: the Mauve system (Darling, Mau et al. 2004) – http://asap.ahabs.wisc.edu/mauve/

Basic idea: 
1. Find a collection of MUMs shared by 2 or more genomes (multi-MUMs).  
Can think of a variety of ways of doing this, but in principle the basic idea is to first find exact k-mer matches 
across multiple genomes (making sure none is a repeat in any of the genomes) then extend these matches 
along groups of genomes as long as the corresponding sequences agree.

2. Find locally collinear blocks (LCB) among the MUMs – these are sets of MUMs that occur in the same order 
in all genomes. Note: the LCB algorithm requires all MUMs to occur in all genomes so it's only applied to those
MUMs.  

The idea of the LCB algorithm is to repeatedly sort the MUMs based on their occurrence in each genome, and 
mark breakpoints in this sorting – places when the MUMs sorted by genome i occur out of order in genome j.  

3. A global guide-tree is constructed from all genomes, using the weight of the shared MUMs as a 
similarity/distance measure.  This tree is then used to align the regions between the MUMs using ClustalW.



 5.1.5 Exercises

1. The optimal Steiner multiple alignment for a set of k strings is the alignment that minimizes
* *( ) ( , )

i

i
S

E S D S S=å  over all possible choices of the Steiner string S*.  Show that, if the scoring function D 

satisfies the triangle inequality, there exists a string S  in the original set of strings such that *( ) / ( ) 2E S E S < .

2. We showed that the sum-of-pairs score of the optimal star alignment is at most twice the score of the optimal
multiple alignment of a set of sequences.  Can you generalize this result?  Specifically, the star is a special type 
of tree.  Assume that instead of a star you could construct a tree containing the sequences being aligned at both
the leaves and internal nodes. The score of such a tree is, just as in the star case, the sum of the optimal 
pairwise alignment scores for sequences adjacent in the tree.  Assume you had an algorithm that could 
compute the optimal tree alignment (sum of distances is minimized).  Can you prove anything about the sum-
of-pairs score of the induced alignment?  (Note: assume distances satisfy triangle inequality)

 5.2 Profile alignments and hidden Markov models

Above we described the idea that the consensus string (or Steiner string) of a multiple alignment can be 
viewed as a 'summary' of a multiple alignment.  Such a summary may come in handy, for example, when 
comparing a new protein sequence against a family of proteins aligned to each other in an alignment.  For 
example, one could compare a newly discovered protein against a multiple alignment of myoglobins in order 
to determine whether the new protein is a myoglobin as well, and how it relates to the known sequences.   
Another possible use for such a summary is a better progressive alignment (see above under section 5.1.1) 
which avoids mistakes by taking into account more of the alignment than just its consensus sequence.

 5.2.1 Profile alignments

The simplest approach for summarizing multiple alignments is the alignment profile approach proposed in 
(Gribskov, McLachlan et al. 1987). The idea is to construct a new type of consensus sequence that captures 
more than just the best character for each column.  Instead we simply record all characters found within that 
column as well as their proportion, as shown below.
Seq1 A     C     C     -     A     G     T     G     A     -     C     T
Seq2 -     C     G     T     A     G     C     G     A     -     C     T
Seq3 A     C     C     -     A     G     T     G     T     -     C     T
Seq4 A     C     G     T     A     G     T     C     A     T     C     T
Prof A(.75) C(1) C(.5) T(.5) A(1)  G(1)  T(.75)G(.75)A(.75)-(.75) C(1) T(1)
     -(.25)      G(.5) -(.5)             C(.25)C(.25)T(.25)T(.25)

While the profile appears quite intuitive, we still have the problem of aligning sequences to it. Specifically, 
what is the score of aligning a particular sequence to a profile?  We can define this score to be the expected 
alignment score between the character being aligned and the characters in the profile.  More formally, assume 
we are aligning character S[i] to profile P[j], where P[j] is defined as a list of k pairs (pl[j], Cl[j]) corresponding  
to the probability pl[j] of observing character Cl[j] in column j of the multiple alignment.  The score V[i,j] of 
aligning character S[i] to profile column P[j] is simply V [ i , j ]=∑1≤ l≤ k

pl [ j ] f (S [i ] ,C l [ j ]) , where the 
function f is the scoring function for aligning two characters, e.g., the value found in the BLOSUM matrix.  
Using this definition of score it is easy to see that one can simply use the traditional dynamic programming to 
align a sequence to a profile.



 5.2.2 Hidden Markov models

The alignment of a sequence against an existing multiple alignment can be viewed simply as a machine 
learning/classification problem. The multiple alignment is some data-structure linking together the positive 
examples we have seen so far (e.g., various instances of myoglobin proteins), and the alignment of a sequence 
against this multiple alignment is equivalent to trying to decide whether a new example falls in the same 
category.  For this purpose we can use formalisms developed in the context of machine learning, specifically 
Hidden Markov Models.  Their use was originally proposed by Sean Eddy (Eddy 1995, Eddy 1998). 

The basic idea is to convert a multiple alignment into a probabilistic generative model which produces 
sequences with similar properties as those contained in the alignment.  The alignment of a sequence against 
such a model corresponds to computing the likelihood that the particular sequence would have been 
generated by the alignment.

To make things more concrete, the model comprises a series of states (like we earlier described in the context of
automata) and transitions between these states.  At a broad level we can view each state to correspond to a 
particular column in the alignment (the M states in the figure above).  Each state also has associated with it an 
emission probability, indicating the probability a particular character is emitted by the model in that state.  The
most basic form of such a model simply links together the states corresponding to each column, and the 
emission probabilities are set to the profile described above.  One slight change is necessary – the unobserved 
characters must be given some very low probability, otherwise the model would not be able to align new 
characters against that specific column.  To allow insertions and deletions, additional states can be added (I 
and D above) which model an insertion of one or more characters between two columns, or the deletion of a 
column from the alignment. Insertion states also have emission probabilities, generally assuming all characters
may be inserted with equal probability.  Deletion states do not emit any characters. In addition, all transitions 

Figure 11: Example of multiple alignment Markov Model (from (Eddy
1995))



have an associated transition probability.

To compute the probability that a particular sequence was emitted by a given model, we proceed with yet 
another version of dynamic programming, the Viterbi algorithm.  As in the case of sequence alignment, we 
will try to compute V[i, j] – the probability that the prefix i of sequence S was generated by the model up to 
state j.  We can see that V [ i , j ]= ep j (S [ i ])maxall pred V [ i− 1, pred ] tp( pred → j) where epj is the emission 
probability in state j, tp is the transition probability between two states and pred is one of the states preceding j. 
In other words, the probability we reach state j with character S[i] is the product (logical AND) of the 
probablity S[i] would be emitted in state j and the probability that we would reach state j from some prior state
pred.  Obviously to maximize this score we choose the best such prior state. 

 5.2.3 Pairwise sequence alignment in a probabilistic setting

Earlier we discussed pairwise sequence alignment in terms of either minimizing edits or maximizing an 
alignment score, while in the HMM alignment we think of alignment as maximizing a probability.  These two 
scenarios are not in fact that different.  If you remember, the alignment scores are computed as a log odds.  
Summing up these scores is equivalent to multiplying the corresponding probabilities – i.e., maximizing the 
score is equivalent to maximizing the probability of the alignment.  The difference from the HMM case is that 
in HMMs the probabilities are computed from a specific alignment, while with BLOSUM the  probabilities are 
derived from a broader set of sequences and are thus more general.

Note that we could formulate the pairwise alignment problem as an HMM alignment simply by constructing 
an HMM from a single sequence, with the same structure as the profile HMM described above, however with 
probabilities inferred from the BLOSUM matrix (with one sequence we don't really have the statistical power 
to estimate these probabilities).  This formulation leads to essentially the same solution for the alignment 
problem as the traditional dynamic programming approach, but provides additional flexibility in defining the 
structure of possible alignments.  As an example, affine gap penalties can be easily incorporated by creating 
two states instead of one for deletions and/or insertions, corresponding to gap openings and gap closing 
events.

 5.3 Local multiple alignment/motif finding

Before discussing local multiple alignment we would like to highlight the strong dependency of the results on 
the assumptions of the scoring function used.  There are a number of scoring approaches that have been 
developed in the context of multiple sequence alignment which include sum-of-pair scores (Murata, 
Richardson et al. 1985, Bacon and Anderson 1986), tree scores (the scores take into account an underlying 
phylogenetic tree connecting the sequences) (Sankoff 1975), entropy scores (Schneider, Stormo et al. 1986), or 
generalizations of log-odds scores to multiple alignments (Ye, Yu et al. 2010) (to be discussed further below).  
The tree scores are perhaps the more biologically relevant as they capture the underlying evolutionary 
relatedness of the sequences, however sum-of-pair scores are widely used due to their conceptual simplicity.  

Note that the choice of score is intimately tied to the algorithm used to construct the multiple alignment that 
optimizes the alignment score of all the sequences.  As we described before, the sum-of-pairs score can be 
easily approximated using the star alignment heuristic.  Other scoring functions may be harder to optimize or 
approximate.

In the following we will ignore gap scores but would like to note that if used gap scores need to be considered 
within the same mathematical formalism/context as the substitution scores used (e.g., tree-based gap scores for
tree-based substitution scores) (Altschul 1989).

Coming back to the local multiple alignment problem, we are specifically trying to find short segments within 
the sequences being aligned that can be aligned to each other into one or more high scoring multiple 



alignments.  

We need to define an appropriate measure of alignment quality.  The measure should ideally satisfy several 
conflicting requirements: (i) reflect known amino-acid relationships; (ii) make no constraints on alignment 
width; (iii) handle missing or duplicate patterns; (iv) allow gaps; (v) be independent of the order of sequences; 
(vi) be computable by a deterministic algorithm; (vii) be computable in linear time.  No known algorithm that 
satisfies all or even a sufficiently large subset of these criteria.  The choice of constraints that are optimized 
depends on the specific requirements of the underlying problem.  In the following we will describe several 
approaches for local multiple alignment and highlight the respective tradeoffs involved in these approaches.

First, some notation:

N – number of sequences
L – average seqence length
A – alphabet size 
W – width of pattern/alignment

 5.3.1 Consensus word method

The idea behind the consensus word method is to attempt to find some word in one of the sequences that is 
similar to words in some or all of the sequences being aligned.  Essentially we are building a star alignment 
around a chosen word.  

For each word of width W in one sequence we compute the neighborhood of B adjacent words (may differ by 
1, 2, etc. letters), with an associated score/penalty.  We then find within each sequence words that belong to this
neighborhood.   The approach proceeds until one word is found that has near neighbors in most of the 

Figure 12: Local multiple alignment. The goal is to identify 
segments shared by two ore more long sequences (the blue 
boxes linked by the dotted line) that can be aligned globaly.  
The bottom of the figure shows an alignment and its 
consensus sequence where capitalization indicates how 
conserved each nucleotide is.



sequences. 

The runtime is O(NLB + AW), and space O(AW).  

The consensus word method is efficient (linear time) for a fixed word size, however it places significant 
restrictions on pattern length and the words that may align to the chosen consensus word (words outside the 
chosen neighborhood are discounted).  These restrictions limit its use in protein sequences. 

Some papers describing this approach are: (Queen, Wegman et al. 1982, Waterman, Arratia et al. 1984, Galas, 
Eggert et al. 1985, Staden 1989) 

 5.3.2 Template method

The template method extends the consensus word approach by defining a set of templates of size B,  (e.g., 
V*C**D – where * is a wild card).  These templates are iteratively searched through the set of sequences and 
words that best match the template are retained. 

Runtime is O(NLB) and the memory usage is O(B).  

This approach has the same advantages and disadvantages as the consensus word approach.

Some papers describing this approach are: (Sobel and Martinez 1986, Posfai, Bhagwat et al. 1989, Smith, Annau
et al. 1990, Leung, Blaisdell et al. 1991) 

 5.3.3 Progressive alignment

The progressive alignment approach is similar to progressive alignment heuristics used in global multiple 
alignment. Specifically, the approach starts by finding local alignments in the first two sequences.  Then 
additional sequences are added iteratively each time attempting to match to only the highest-scoring local 
alignments from earlier iterations. 

The runtime is O(NLBW).

This approach can be viewed as a generalization of the template method where the template is refined 
throughout the iterations.  The approach places no constraints on pattern width and allows arbitrary scoring 
functions.  At the same time, however, the approach is very sensitive to sequence order and cannot guarantee 
an optimal solution.  Another issue arises from sequences that simply lack a good alignment.

Some papers describing this approach are: (Bacon and Anderson 1986, Stormo and Hartzell 1989, Hertz, 
Hartzell et al. 1990)  

 5.3.4 Pairwise consistency methods

Pairwise consistency methods extend the iterative approach by focusing on all pairwise alignments of 
sequences, alignments which can be seen as defining two-dimensional diagonals ina multi-dimensional search 
space.  Sets of consistent diagonals are then used to define multi-dimensional diagonals along which a 
multiple alignment is computed. 

The runtime is O(N2L2 + f(H)) where H is the score threshold used to define a good scoring diagonal. 

This approach has many advantages – does not restrict pattern width, is independent of sequence order, can 
use arbitrary scores, and can find the optimal alignment.  Its efficiency is, however, poor, especially for low 
alignment quality thresholds.

The approach is implemented in the MACAW program (Schuler, Altschul et al. 1991). 

Note that the efficiency of the approach is dependent on the number of dimensions.  While there are roughly  



N LN-1  diagonals that need to be considered, (N
2
) 2-dimensional diagonals must be consistent in order to 

define an N-dimensional diagonal.  As the number of dimensions increases the number of valid choices 
rapidly decreases. 

Another paper on this approach is (Vingron and Argos 1991).

 5.3.5 Gibbs sampling

Gibbs sampling (Geman and Geman 1984) falls into the general class of optimization approaches for high-
dimensional spaces.  The structure of the solution space has a huge impact on the efficiency of the optimization
approach.  For example, in spaces where the optimization function is smooth and has a single extreme value 
the solution can be easily found through analytical method.  In spaces with no structure (multiple random 
minima/maxima) the optimization problem is intractable.  Most of the practical problems focus on spaces 
where the optimization function has multiple, but not random, local optima

In our case we are focusing on N sequences of fixed width W and try to find the highest scoring ungapped 
alignment combining these sequences.  Note that as described earlier, from any given multiple alignment we 
can construct a profile which can then be used to evaluate the 'fit' of a sequence with this multiple alignment.  
The Gibbs sampling approach essentially alternates between defining the profile and optimizing the alignment
of sequences to this profile (Lawrence, Altschul et al. 1993).  

Specifically, the process starts by picking a random multiple alignment of words of width W from the 
sequences.  Then, an iterative process starts by removing one sequence from the alignment and constructing a 
profile from the remaining sequences.  The resulting profile is then used to find words in the removed 
sequence that could be aligned with a good score to the profile.  One of these is selected at random with a 
probability proportional to its fit to the profile, and the process (pull out a sequence and replace it with a better
fit to the remaining profile) is repeated until convergence.  

Why does this approach work? As we 'fit' new sequences to the profile, the corresponding scoring matrix gets 
more and more biased towards patterns matching the already aligned sequences, and the corresponding scores
get improved. 

This simple approach is quite powerful but has several limitations.  First, there is no guarantee that the 
approach will find the optimum and it's generally useful to restart the process from different random 
configurations.  Also, the solution can focus on a sub-optimal shifted solution – it is easy to converge to a 
solution very close to the optimal, essentially overlapping the optimal pattern.  A possible solution is adding a 
new type of 'move' in the algorithm that shifts the entire pattern by a few positions in all sequences. 

Note that we presented the algorithm with a fixed width – we can interleave the general iterative approach 
with new 'moves' that increase or decrease the width of the alignment in order to capture more of the 
information.  Such approaches should be used carefully as it's easy to overtrain by focusing on very specific 
(generally short widths).   

Finally, a major limitation of Gibbs sampling approaches arises in situations where there are many nearly 
identical versions of sequences – the approach relies on the fact that removing one sequence changes the 
profile sufficiently to allow a better fit of another word from that sequence. When multiple sequences are close 
to identical, removing one of them will have no impact on the alignment profile, ultimately biasing the final 
alignment to sub-optimal patterns in these highly similar sequences.

 5.4 Scoring systems for multiple alignments

As described above, an important question to consider is the scoring function used to define the quality of a 



multiple alignment.  Specifically, how do we score the alignment of an amino-acid letter to a column of letters.  
The traditional approach, as described above, is to simply average the scores of pairwise alignments (sum-of-
pairs scores). This approach, however is unable to capture intrinsic properties of the multiple alignment. 
Imagine, for example, a position in a protein that only contains leucines in all variants of the protein.  We 
would ideally want to strongly discourage alignments without a leucine in this position, yet averaging 
pairwise alignment scores does not have this effect.

A solution to this problem is to generalize the log odds scores from pairwise to multiple alignments:

si= log
qi

pi

where qi is the probability of observing amino-acid i in that column (probability that takes into 

account all other amino-acids in that column). We can estimate the probabilities qi as simple fractions, but we 
do not know how to deal with probabilities for situations we haven't seen.  For example, the amino acid 
tryptophan has a background probability of 1/100, so it will not be observed in most alignment columns unless
many sequences are examined.  

We can view this problem in a Bayesian context.  We want to put a prior on the space of all possible 
multinomials (the mixture of the distribution of the frequencies of amino-acids that add to 1), which we 
modify based on observations to find the posterior probability distribution.

We can view the multinomial as a generalized tetrahedron in a multi-dimensional space (20 dimensions for 
amino-acids), such that each point on the tetrahedron represents a particular combination of amino-acid 
frequencies, all adding to 1 (the tetrahedron has effective dimension 19 as the last amino-acid's frequency is 
defined by that of the others). 

Mathematically, the prior is a Dirichlet distribution p (x
→
)= Z∏i

x i
αi− 1 where Z= Γ(∑ αi)/∏ Γ (αi)

chosen such that p (x
→
) integrates to 1.  Note that Bayesian approaches work with any distribution.  The 

choice of a Dirichlet distribution is due to mathematical convenience and has no specific biological meaning.

The simplest way to think about this distribution is to imagine a hill on the multi-dimensional tetrahedron.  

The distribution can be parametrized by the center of mass p
→
= α→ /∑ αi and by α=∑ α i .  Intuitively, the 

vector p
→

defines the center of mass of the distribution and α defines how 'peaked' the distribution is, i.e., 
how much of the distribution mass is concentrated around the center of mass.

As we observe events (specific amino acids), we can modify our prior estimation (generally assigning all 
amino-acids an equal representation) by shifting the center of mass and increasing the height of the 
corresponding 'hill', thereby deriving the posterior Dirichlet distribution. 

A single Dirichlet distribution fails to capture our prior knowledge concerning relationships between the 
amino-acids (distinct regions of the multinomial space are known to be favored by proteins – not all alignment 
columns are the same).  To incorporate additional information, such as alignment positions that like to be 
positively charged, hydrophobic, etc., we can use a mixture of Dirichlet distributions – the Dirichlet mixture  - 
a richer description of the prior.  Specifically, this mixture consists in a collection of 'hills' each summarizing a 
specific type of multiple alignment column.  Each component has 21 parameters (19 are the position of center, 
1 peak, and the amount of the total probability mass assigned to it).  Total number of parameters of the 
Dirichlet mixture is thus M(L+1) – 1 for an M-component mixture.  This formalism was introduced by (Brown, 
Hughey et al. 1993). 

As in the case of pairwise alignment scores, we cannot estimate the priors for the Dirichled mixture from first 
principles.  We, thus, have to derive these priors from actual experimental data. As before, we invert the 
problem, starting with putatively correct multiple alignments, each column in these alignments providing 
information about possible components of this mixture.  Fitting a maximum-likelihood Dirichled mixture from



the data is a difficult optimization problem which can be solved using typical approaches such as Gibbs 
sampling (Geman and Geman 1984), the EM algorithm (Dempster, Laird et al. 1977, Brown, Hughey et al. 
1993), Metropolis search (Metropolis, Rosenbluth et al. 1953), etc.

Here we will describe a Gibbs sampling approach.  The approach starts with N multiple alignment columns, 
and attempts to find M components (for now we assume we know the number of components but we will 
relax this assumption later).  The alignment columns are assigned to individual components at random, and 
this information is used to estimate the individual Dirichlet distributions. We then proceed by randomly 
picking one of the columns and re-assigning it to a distribution within which it fits better.  Just as described 
earlier for motif finding, this process is repeated until convergence.

Simple approaches for choosing the appropriate number of components (e.g., picking the set of components 
that maximizes the fit with the data) are prone to overfitting. Instead one can use the minimum description 
length principle (Grünwald 2007) – select the least complex model that can explain the data.  Essentially we 
define the description length of the data S given a model M – DL(S|M) - as the log probability of S implied by 
the maximum likelihood embodied in the model M.  The complexity of the model COMP(M) is the log of the 
effective number of the independent theories embodied in the model.  The best model minimizes DL(S|M) + 
COMP(M). Essentially, we penalize simultaneously the complexity of the model and the fit of the data to the 
model.  This approach is a formalization of Occam's razor.

The specific approach used to simultaneously pick the optimal number of components and fit the parameters 
of these components is based on a Dirichlet process – a process that essentially provides a prior distribution on
the weights of the components, assuming a possibly infinite set of components.   This process is related to the 
Chinese restaurant process – customers arrive at a restaurant with an infinite number of tables, each of which 
can sit an infinite number of people, and can sit at any table they choose.  The probability that a customer 
chooses a particular table is proportional to the number of people already sitting at the table, though the 
customers can also choose to sit at an empty table with a probability determined by a parameter γ.   The tables 
can be seen as the individual components of the Dirichlet mixture, and it is easy to see that this approach does 
not restrict the number of components but encourages the number of components to stay low (it is more likely 
to sit at an occupied table than to pick an entirely new one).

Gibbs sampling can be modified to operate without a prior assumption on the number of components, by 
allowing a column to start a new component with some low probability.  Also, components can disappear if all
the columns have been removed.  

This approach was recently used in (Nguyen, Boyd-Graber et al. 2013) and revealed that the actual landscape 
of protein multiple alignment scores is best explained by a probability 'ridge' rather than a collection of 
individual 'peaks'.  The Dirichlet mixtures estimated from the data comprise large numbers of components, as 
you cannot otherwise model a ridge with a collection of peaks.

 5.5 Exercises

1. Assume you are given a set of K sequence of length L.  You are also given a special C or Java function:

Alignment  AlignSeqs(Gapped_sequence S1, Gapped_sequence S2);

a) Write out the pseudo-code for constructing the multiple alignment of these sequences, using the AlignSeqs 
function.  

b) Do you need to extend the AlignSeqs function to accept other types of inputs?  Please provide the definition 
(parameter and return types) for any additional functions you might need and briefly outline their 



functionality.

c) What is the running time of your algorithm?

2. The optimal Steiner multiple alignment for a set of k strings is the alignment that minimizes
* *( ) ( , )

i

i
S

E S D S S=å  over all possible choices of the Steiner string S*.  Show that, if the scoring function D 

satisfies the triangle inequality, there exists a string S  in the original set of strings such that *( ) / ( ) 2E S E S < .

3. We showed that the sum-of-pairs score of the optimal star alignment is at most twice the score of the optimal
multiple alignment of a set of sequences.  Can you generalize this result?  Specifically, the star is a special type 
of tree.  Assume that instead of a star you could construct a tree containing the sequences being aligned at both
the leaves and internal nodes. The score of such a tree is, just as in the star case, the sum of the optimal 
pairwise alignment scores for sequences adjacent in the tree.  Assume you had an algorithm that could 
compute the optimal tree alignment (sum of distances is minimized).  Can you prove anything about the sum-
of-pairs score of the induced alignment?  (Note: assume distances satisfy triangle inequality)



 6 RNA structure and structural alignment

RNA molecules are usually single-stranded (though double-stranded RNA also exists in nature) and often fold 
into a three-dimensional structure driven by the pairing of complementary nucleotides.  The exact shape is 
dependent on many biophysical factors, however a reasonable approximation can be obtained using fairly 
simple assumptions.

 6.1 RNA structure prediction (RNA folding)

The simplest definition of the RNA folding problem involves pairing up complementary nucleotides (A-U, C-
G) in a way that maximizes the number of "contacts" - correctly paired nucleotides.   This problem can be 
easily solved if we assume all pairings are properly nested, i.e. the structure can be expressed as a series of 
parantheses:

>Sample RNA 
AAAAAAAAAAAAAGGGGGGGUUUUUUUUUUUUUUCCCCCCCCCCCCCCCCC 
.............(((((((..............))))))).......... 

In many cases this assumption is not true in real life, resulting in what are called pseudo-knots - pairings of 
nucleotides that do not obey the "proper parenthesis" rules (see figure below).  Figuring such situations out is a
lot harder to do computationally and will be discussed under probabilistic folding methods below.

Figure 13: RNA fold structure (from: 
http://virtuallaboratory.colorado.edu/Biofundamentals/lectureNotes/Topic3-2_NucleicAcids.htm)



 6.2 Nussinov's algorithm – Dynamic Programming folding approach

This algorithm is a variant of the CYK algorithm used to parse Chomsky Normal Form grammars.

The basic idea is to focus on the simpler problem of folding a short stretch of RNA – i.e. the dynamic 
programming recurrence will build upon value V[i, j] - the number of contacts in the best fold of substring 
S[i..j].  

We can distinguish four different cases:

1. V[i,j] = V[i+1, j-1] + 1     - if nucleotides S[i] and S[j] match
2. V[i,j] = V[i+1,j]  - nucleotide S[i] is unpaired
3. V[i,j] = V[i, j-1] - nucleotide S[j] is unpaired
4. V[i,j] = maxi<k<j (V[i,k] + V[k+1,j]) - fold of S[i..j] is built from two subfolds of S[i..k], S[k+1,j]

At each step in the algorithm, V[i,j] will be set to the maximum of the 4 cases specified above (see figure below)

As initial values, the
DP matrix can be
filled in with 0s for
V[i,i] and V[i, i+1] as
adjacent nucleotides
cannot be paired up.
Also, if we expect
that loops cannot have fewer than k nucleotides, we could set V[i, i+j] to 0 as well for all j < k.  

Once the initialization is complete, the DP matrix can be filled in, diagonal by diagonal (for each diagonal the 
difference between i and j is constant) starting from the main diagonal (i-j = 0) as all the information needed 
will be available in previous diagonals.  V[1,n] will eventually contain the maximum number of contacts 
achievable.

If we want to find out all the pairings, the algorithm will need to backtrack from V[1,n] using a similar 

Figure 14: Pseudo-knot - the link indicates nucleotides that are physically "connected" in the 3D 
conformation.



approach as that described for sequence alignment.  There is one catch, however, the backtrack pointers form a
tree structure due to the bifurcation operation (case 4 above) – and the backtrack needs to recurse on either 
side of the bifurcation.

 6.3 Zucker's algorithm – Extension to actual energy functions

Nussinov's algorithm simply assumes that each nucleotide pairing is equally good, and also that there are no 
penalties for unpaired bases – both assumptions that are incorrect in the real world.  To account for these 
factors Michael Zucker extended Nussinov's algorithm to incorporate energy terms (see 
http://www.bioinfo.rpi.edu/zukerm/rna/energy/ for a list of the structures being evaluated). The goal here is to 
find the fold that minimizes the free energy of the resulting structure – a more biophysically reasonable 
objective function than # of base pairings.  

A full description of Zucker's algorithm (implemented in the program mfold) is beyond the scope of this 
document.  I just want to mention two features.  First, the algorithm allows the computation of sub-optimal 
folds by performing several rounds of (imperfect) backtracking with the goal of identifying structures that 
have similar energies but differ significantly.  The assumption is that due to a variety of reasons (e.g. energy 
terms cannot be correctly computed and differ from actual energies in the real system) the actual structure 
might not be the one that minimizes the energy, rather is one of the many structures with low energy.

A second feature of Zucker's algorithm is that it allows the computation of "stacking" energies – taking into 
account the fact that the energy of a stem is not simply the sum of the energies of the individual base-pairings. 
To account for length-specific stem energies the algorithm uses a similar approach as that used in computing 
affine gap penalties in sequence alignment.

 6.4 Probabilistic folding

The folding approaches described above assume a fair amount of prior knowledge – which bases can be 
paired, what are the energy terms for certain simple structures, etc.  Assuming we had a large number of 
sequences that we know fold the same way (e.g. because they do the same things), could we learn the fold 
itself?    

A simple approach starts by taking all the sequences and constructing a multiple sequence alignment.  Within 
this alignment (assuming it's well built – which is generally not the case given that multiple alignment is NP-
hard) we can assume that each column represents a same position within the fold common to all the 
sequences.   We can observe that if two nucleotides are paired up in the common fold, then these nucleotides 
need to be complementary in all the sequences, i.e. the corresponding columns in the alignment are correlated. 
A way to measure this correlation is through the concept of mutual information – how much information can 
we learn about column j given that we know the content of column i.  

Mathematically, the mutual information between columns i and j can be expressed as:

M (i , j)=∑ xi , x j

f xi x j
log2

f xi x j

f xi
f x j

where xi and xj are the corresponding nucleotides in the two columns within the aligned sequences, and the f 
terms are the frequencies of a specific pairing or nucleotide, respectively, in the whole set of sequences.  M(i,j) 
varies between 0 (no correlation) and 2 (full correlation).  By computing M(i,j) for all pairs of columns in the 
alignment we can identify those positions that are likely paired up in the final structure.  If we assume the 
structure is properly nested we can use a variant of Nussinov's algorithm to maximize the mutual information 
between paired-up positions. In the non-nested case (pseudo-knots) the problem is likely NP-hard.



 6.5 Structure alignment

When aligning sequences it is often the case that at least one of the sequences being aligned has some known 
structure. An example are 16S ribosomal RNA databases – the structure of the ribosomal RNA is known, now 
we want to use this information to guide the alignment of a new sequence against the database.

Jiang et al. (Jiang, Lin et al. 2002) describe several variants of this problem depending on whether the structure 
is nested or not, and on whether the structure is known for one or both of the sequences.  In brief, the 
(NOSTRUCTURE, NOSTRUCTURE) alignment is simply the traditional sequence alignment algorithm.  
(NOSTRUCTURE, NESTED) can be solved with a variant of Nussinov's algorithm, and all other variants 
((NESTED, NESTED), (NON-NESTED, NOSTRUCTURE), (NON-NESTED, NESTED), (NON-NESTED, NON-
NESTED)) are NP-hard.

Note that formalizing the structure-sequence alignment can be challenging – Jiang et al. create a set of scores 
for the various ways in which pairings are broken up during alignment.  

An alternative approach is a probabilistic alignment framework similar to the profile HMMs described earlier 
in the class.  A good example is the Infernal package from the Eddy lab (Nawrocki, Kolbe et al. 2009) which 
relies on stochastic context free grammars to take into account the pairing of columns in a multiple sequence 
alignment then extends the grammars in a similar way HMMs extend the standard profile alignment.

 6.6 Exercises

1. Bacterial transcription terminators are characterized by a stem-loop secondary structure.  Below is the 
recurrence for a simple adaptation of Nussinov's algorithm to the problem of finding stem-loops in a string of 
DNA. Note that we are not trying to find if the whole string of DNA folds into a stem-loop, but to find a 
section of the DNA that likely folds into a stem-loop structure.  In addition, we wish to guarantee that the 
loops are at least 4 nucleotides in length.  In the equation below, F[i,j] represents the score of folding the 
substring S[i..j] from the original string of DNA.

 F [i , j ]= max i , j{F [ i+1, j− 1]+1iff S [i ] , S [ j ]are complementary
F [i+1, j ]− penalty (S [ j ]unpaired )
F [ i , j− 1]− penalty (S [i ]unpaired ) }

Please answer the following questions:

a. What are the initial conditions for this algorithm?

b. Where will the answer be located?

c. Why did we have to subtract a penalty in case of unpaired sequences (note Nussinov's algorithm 
does not have such a penalty). 

2. Nussinov's RNA folding algorithm could be extended to allow the incorporation of "stacking" energies, i.e. 
the incorporation of a score term S[k] representing the score of k adjacent base-pairings within a stem. Assume 
S[k] != k.   Provide the details of a modified Nussinov algorithm that can take these stacking energies into 
account.

Please be thorough: describe the dynamic programming table(s) you need, what the values stored in these 
tables represent, as well as the recurrence equations that allow you to fill in the table. 

3. 1. Given the following sequence representing an RNA molecule
ATTAGCTGCCAACACTCAGCTAA
draw a possible fold of the sequence into a hairpin structure.



 7 Sequence clustering and phylogeny

 7.1 Introduction

Data clustering is one of the key tools used in various incarnations of data-mining - trying to make sense of 
large datasets. It is, thus, natural to ask whether clustering approaches can enhance our understanding of 
biological sequences.  A common application of clustering is the analysis of 16S rRNA sequences extracted 
from an environment.  In theory, each distinct rRNA sequence should represent a single organism, however, 
due to sequencing errors and recent evolutionary changes a single organism is represented by many closely 
related RNA sequences.  Thus, by clustering the set of sequences we might infer how many organisms are 
present in our sample.

Clustering approaches can be classified into three main categories:

• Agglomerative – algorithm starts with each sequence as an independent cluster, then iteratively joins 
together sequences to create larger clusters

• Divisive – algorithm starts with all the sequences in one cluster then iteratively breaks up the cluster 
into a collection of smaller clusters.

• Partitioning/partition methods – e.g. k-means – algorithm starts with a pre-defined set of clusters then 
refines the cluster membership to improve cluster quality.

Various approaches use different criteria for when the clustering should stop, usually based on some concept 
of cluster quality.  The basic goal is to create clusters such that all sequences within a cluster are similar to each 
other(clusters are compact), and sequences contained in different clusters are dissimilar to each other (clusters 
are well separated).  There are a variety of mathematical measures that capture one or both of these criteria.  
Also, the quality of a cluster can be assessed either in an unsupervised way (clustering algorithm and 
validation algorithm have access to the same information) and in a supervised/assisted way (validation 
algorithm has access to additional information that can be used to evaluate cluster quality). A good 
introduction to these topics is presented in (Handl, Knowles et al. 2005). 

Note that clustering algorithms need to determine explicitly or implicitly the distance between the objects 
being clustered.  In the context of sequence data, such distances are defined by measures of sequence similarity
such as edit distance.  In the general case one must compute all pairwise distances between sequences – a 
process that is computationally prohibitive for large datasets.  Various heuristics can be used, in specific 
situations, to reduce the runtime either by using simple measures of sequence similarity, or avoiding to 
compute all pairwise distances.  For example, the triangle inequality can be used to bound the distance 
between sequences without actually computing it.  

Some good introductions to clustering are: (Fasulo 1999, Jain, Murty et al. 1999).

 7.2 Partitioning methods

The prototypical partitioning clustering approach is the k-means algorithm (see, e.g., (Kanungo, Mount et al. 
2002)).  This approach is very similar in spirit to the Gibbs sampling approach.  The goal is to cluster N data 
points (in our case we can assume they are sequences) in to K different cluster, where K is known a priori.  The 
clustering will attempt to optimize the quality of the clusters,  usually defined as the squared distance between
the clustered sequences and the corresponding cluster centers.   K-means clustering starts by randomly 
assigning sequences to K clusters, then computing the corresponding cluster center. Then the process 
iteratively reassigns sequences to the nearest cluster center, recomputes the centers, etc., until convergence.  

An approach used to speed up the k-means approach, by avoiding the computation of exact distances is 



canopy clustering (McCallum, Nigam et al. 2000).  This approach relies on approximate distances to construct 
a series of 'canopies' that cover the objects being clustered.  A more precise clustering algorithm is then 
performed within each canopy.  Specifically, a data point p is selected and all other points within a distance 
threshold T1 from p are added to p's canopy.  Among these, a second threshold T2 < T1 determines the points 
closest to p which are then 'frozen' and no longer processed.  The process proceeds by selecting another point 
not found within p's canopy, until all points are assigned to a canopy.  Note that the different canopies can 
overlap.  Also, the number of canopies found can provide a suggestion for the choice of K when running k-
means to refine the clustering.

 7.3 Hierarchical clustering

Hierarchical clustering is a variant of agglomerative clustering that continues the agglomeration process until 
only one cluster remains. Essentially, through hierarchical clustering you construct a tree, having the sequences
as leaves, that captures the relationship between the sequences at various levels.  Clusters can be constructed 
by cutting the tree at particular points (imagine slicing a head of broccoli with one slice - each floret will be an 
individual cluster) - i.e. for a given node, all its descendents are part of the same cluster.  

The basic hierarchical clustering algorithm proceeds as follows, in a greedy manner:

1. Compute all pair-wise distances between the sequences
2. Merge together the sequences that are closest (most similar) to each other
3. Compute the distance between the newly created cluster and all other sequences/clusters
4. Repeat from 2.

Different hierarchical clustering methods differ in the way they define the distance between already computed 
clusters, or between clusters and individual sequences. Thus we have:

• Nearest neighbor (single linkage)  - distance between clusters i and j is equal to the smallest distance 
among all pairs of sequences, the first from cluster i and the second from cluster j.

• Furthest neighbor (complete linkage) - distance between clusters i and j is equal to the largest distance 
among all pairs of sequences, the first from cluster i and the second from cluster j.

• Average neighbor (average linkage, UPGMA) - distance between clusters i and j is equal to the average 
distance among all pairs of sequences, the first from cluster i and the second from cluster j.

• Ward's clustering – the clusters being merged are the ones that will construct a cluster with the lowest 
variance in within-cluster distances.

 7.3.1 Semi-supervised hierarchical clustering (VI-cut)

In general the goal of clustering is to uncover certain relationships between a set of previously unknown 
sequences.  In many cases, however, these relationships are known, or can be inferred.  In the 16S rRNA 
example above, we might already know the organisms associated with some of the sequences.  This 
information could be used to validate the clusters constructed through one of the clustering methods.  A good 
metric for comparing the "true" clustering to the computed clustering is the Variation of Information metric: 
VI(C1,C2) = H(C1) + H(C2) - 2 I(C1,C2), where H is the entropy, and I is the mutual information between these 
clusterings.  VI(C1,C2) = 0 if and only if C1 and C2 are the same clustering.

Specifically, let's denote by c1,
1 c2,

1 ... , ck
1 the k clusters of clustering C1 and similarly for the l clusters of 

clustering C2.  The entropy of clustering C1 can be computed by viewing each of the clusters as a random 



variable with probability given by p(ci
1)=

| c i
1|

|C 1|
.  The entropy is, thus: H (C 1)= −∑ i≤ k p(c i

1) log ( p(c i
1))

.  Similarly, the mutual information is computed by taking into account the joint probabilityof the two 

cluterings: p(ci
1 , c j

2)=
| ci
1∩ c j

2|
n

, where n is the total number of points shared by the two clusterings C1 and 

C2.  The mutual information is, thus, defined as: I (C1,C 2)= −∑ i≤ k , j≤ l
p (c i

1, c j
2)log

p(c i
1 , c j

2)
p (c i

1) p (c j
2)

. 

Navlakha et al. (Navlakha, White et al. 2010) showed that the VI distance has a nice decomposition property (it
is easy to compute the VI distance between two clusterings given the distances between subsets of these 
clusterings) which allows the construction of a dynamic programming algorithm for finding the "perfect" cut-
set in a hierarchical clustering tree – i.e. the set of cuts in the tree that maximizes the concordance between the 
resulting clusters and previously known clustering of a subset of the sequences.  In brief, at any node v in the 
tree we can compare the fit (in terms of VI distance from the known labels) of the clustering that includes the 
leaves dominated by v in a single cluster, to the clustering that splits these leaves into separate clusters 
dominated by the children olf v. This approach can be considered as semi-supervised as it relies on prior 
information about some of the objects being clustered.

 7.3.2 Exercises

1. Given the following distance matrix, construct a UPGMA tree of the 6 sequences (A-F) shown below.
a) Write out the formula for computing the distance between clusters (BC) and (AD).
b) Fill in the intermediate distance matrices including rows/columns for the clusters being created.
c) Show the topology of the tree.
d) How would answer to a) change if you were performing farthest neighbor clustering?
e) How would answer to a) change if you were performing nearest neighbor clustering?

2. Above we mentioned that furthest-neighbor clustering tends to create tighter clusters than nearest-
neighbor clustering.  Please explain this intuition.  Also, provide an example (a collection of 
sequences/points and corresponding distances) demonstrating this effect.

 7.4 Phylogenetic trees

The hierarchical clustering approaches described above can apply to any type of data, as long as a distance can
be defined between the objects being clustered.  One biological application of clustering attempts to infer the 
evolutionary history that gave rise to a set of sequences observed today.  In this version, the distance between 
sequences attempts to capture the evolutionary relatedness of the sequences, or the time (usually measured as 

A B C D E F

A 0 2 5 7 8 8

B 2 0 5 7 8 8

C 5 5 0 6 7 7

D 7 7 6 0 5 5

E 8 8 7 5 0 2

F 8 8 7 5 2 0



number of mutations) that separates the sequences from each other.   

Thus, the goal is to reconstruct a tree that best captures the "heritage" of a set of sequences – the root of the tree
being the most recent common ancestor of all the sequences.  In the context of protein sequences, the BLOSUM
and PAM matrices discussed during sequence alignment provide a reasonable approximation of the 
evolutionary distance.  For nucleotide sequences, several models of evolution apply that attempt to estimate 
the likelihood a certain base will mutate into another base during a given evolutionary time. The evolutionary 
time separating two sequences can be estimated from the number of identities in the alignment between the 
sequences.  

 7.4.1 Neighbor-joining 

Simple hierarchical clustering approaches have been applied in the context of phylogenetic tree reconstruction,
specifically, the UPGMA (average linkage) clustering algorithm.  One limitation of this algorithm is that it does
not allow for uneven mutation rates along different branches of a tree.  A solution is proposed by the neighbor-
joining algorithm of Saitou and Nei (Saitou and Nei 1987). The basic idea is to correct the distance between two
sequences/clusters by a factor that depends on the distance between each sequence and the rest of the 
sequences.  Part of the intuition is that two sequences should be clustered together if they are "isolated" (far 
from) the rest of the sequences, even if they are fairly apart from each other.

NJD(i , j)= d (i , j)− 1
n− 2

(∑ k≠ i , j
d (i , k )+d ( j , k )) where d(i,j) is the distance between sequences i and j 

(out of n sequences).  

The two sequences with the lowest neighbor-joining distance are clustered together.  Whenever two sequences 
are clustered together, a new node (cluster) m is created and it's distance to all other sequences/clusters is 
computed as follows:

d (m ,k )= 1
2
(d (i , k )+d ( j , k )− d (i , j))∀ k≠ i , j

d (i ,m)= 1
2
(d (i , j)+ 1

n− 2
(∑ k ≠ i , j

d (i , k )−∑ k≠ i , j
d ( j , k )))

d ( j , m)= 1
2
(d (i , j)+ 1

n− 2
(∑ k≠ i , j

d ( j , k )−∑ k ≠ i , j
d (i , k )))

Then the process is repeated until all sequences belong to a single cluster (the root of the tree).

The neighbor-joining algorithm can be shown to produce the optimal phylogenetic tree – in terms of 
reconstructing the true evolutionary history of a set of sequences – if the pairwise distances between sequences
are additive, i.e.,  d(i, j) = d(i, k) + d(k, j) for any sequences i, j, k.  This property should hold for true evolutionary
distances however is unlikely to hold for distances computed heuristically, e.g. through inexact sequence 
alignment.

 7.4.2 Computing parsimony/likelihood scores

Complementary to distance based methods, which assume that we can accurately estimate the evolutionary 
distance between sequences without using any information about their heritage, are approaches that define 
global measures of the quality of a phylogenetic tree. 

The two major classes of such methods are parsimony (best tree is the one that minimizes the number of 



mutations during evolution) and likelihood (best tree is the one that optimizes the "fit" with a predefined 
stochastic model of evolution).  A key component of these methods is an algorithm for computing the 
"goodness" of a tree, given a set of sequences stored at its leaves.  For simplicity, I will only focus on the 
parsimony approach, however the algorithm can be easily adapted to compute the likelihood of a tree.

Also, I will focus on a special case where each sequence is comprised of a single nucleotide – for longer 
sequences the parsimony score (to be defined) is simply the sum of the parsimony scores of each individual 
character.  Note that in phylogeny we generally try to work with "traits" (in our case nucleotides) that can be 
inferred to be related to each other.  In the context of sequence analysis a trait is represented by one column in 
the multiple alignment of the sequences being aligned, as we can infer that all the letters in that column have 
been derived, through evolution, from a same ancestral nucleotide.  If this assumption is incorrect, so will the 
conclusions of the analysis – hence the "obsession" in the field for manually curating multiple alignments.  
Since the multiple alignment problem is NP-hard, the alignments found in practice by heuristic approaches 
frequently contain errors.

Problem definition: Given a phylogenetic tree (assume binary for now but not an essential restriction) having 
the leaves labeled with letters from a given alphabet (ACGT for nucleotides), determine a labeling of the 
internal nodes of the tree (i.e. ancestral sequences) that minimizes the sum, over all the edges in the tree, of the 
number of differences between adjacent letters.

In other words, once you label all the nodes of a tree, you can label all the edges with a 1 if the ends of the edge
have different labels, or 0 if they have the same label.  We are looking for the assignment of labels in the tree 
that minimizes the number of 1s (in the picture below the parsimony score is 2).

The computation of the parsimony score, and the assignment of ancestral sequences, can be easily done with 
dynamic programming.  Specifically, we'll define V[n, c] for all nodes n in the tree, and all characters c in the 
alphabet, to be the minimum parsimony score for the subtree rooted at n, given the root is labeled c.  

V[n,c] can clearly be easily computed for the leaves by setting V[leaf, leaf_label] = 0, and V[leaf, not_leaf_label] = 
-∞. 

Also, once the V values have been computed for the children of a node n, the V values for n can be easily 
computed with the following recurrence:

V [n ,c ]= mini∈ Σ(V [ l , i ]+{1, if i≠ c })+min i∈ Σ(V [r ,i ]+{1, if i≠ c })

where l and r are the left and right children of n, respectively.  

Using this recurrence, the tree can be filled in using a post-order traversal.

The parsimony score is the minimum value in V[root,]. The ancestral states can be easily assigned through 
backtracking.  

The algorithm described in this section is due to David Sankoff and is commonly known as Sankoff's 
algorithm (Sankoff 1975).

 7.4.3 Finding the best tree

While Sankoff's algorithm provides a way to evaluate (in polynomial time) the quality of a given tree, finding 
the tree that maximizes the quality is NP-hard.  Most algorithms for constructing phylogenetic trees rely on 
heuristic search through the space of possible trees.  A discussion of these algorithms is beyond the scope of 
this class.



 7.4.4 Models of evolution

The calculation of a maximum likelihood phylogenetic tree implies an underlying model of how evolution 
works.  Such models are generally represented by the probability that one amino-acid or nucleotide changes 
into another one over some given evolutionary period: P(Ai|Aj, t) – the probability that letter Aj was changed in
to letter Ai after time t.  The time parameter could be either actual time, or some other measure of the 
evolutionary changes across an edge in the tree.  The corresponding probabilities represent the substitution 
matrix across a particular evolutionary distance – S(t).  Note the similarity with the alignment substitution 
matrices defined earlier.

The matrix S(t) can be inferred from certain assumptions about the rate of evolution.  A simple model for DNA 
sequences is the Jukes-Cantor model which assumes that all nucleotides undergo evolution at the same rate α. 
Specifically, the rate of nucleotide substitutions is defined by the matrix:

R=

       A        C        G        T

A
C
G
T
(− 3α α α α

α − 3α α α
α α − 3α α
α α α − 3α)

The substitution matrix can be inferred from the substitution rates by focusing on a very short evolutionary 
time ε.   Over this period we can assume S (ϵ)= I+Rϵ where I is the identity matrix (1s on the main 
diagonal and 0s elsewhere).  To derive S(t) for an arbitrary time t, we note that the matrix R defines the rate of 
change in S(t), i.e, dS(t)/dt = S(t)R, leading to the differential equations:

dr
dt
=− 3α r+3α s

ds
dt
= −α s+α r

where r and s are the diagonal and off-diagonal elements of matrix S(t).   Solving these equations leads to:

r (t)= 1
4
(1+3 e

− 4α t)

s (t )= 1
4
(1− e− 4α t)

Note that the equations imply that after infinite evolution, the substitution matrix converges to uniform 
probabilities, i.e., all nucleotides are equally likely.  

More complex models have been defined to capture the lack of symmetry between the different nucleotide 
substitutions – the Kimura model assumes that purine-purine substitutions (transitions) are more likely than 
purine-pyrimidine substitutions (transversions).



 7.4.5 Exercises

1.  In the phylogenetic tree shown below, calculate the parsimony score (total number of mutations in the 
tree) and indicate what the ancestor sequence was at each internal node. Hint: Sankoff’s dynamic 
programming algorithm for computing the parsimony score computes, for each internal node in the 
tree, the best parsimony score assuming each nucleotide is placed, in turn, at this node.

2. Using Sankoff's algorithm, calculate the maximum score for the phylogenetic tree shown below, as well
as the characters at each internal node.  Note that the scoring matrix is not symmetric - the score of 
evolving A into T is different from the score of evolving T into A.  In the scoring matrix, assume that the
row represents the parent and the column the child in the tree.  For example, if a node is assigned A 
and it's child C, the score along the branch is 3.  If the parent is C and the child is A, the score is only 2.  
At each internal node in the tree please provide both the four scores corresponding to each individual 
nucleotide being present at that node, and the inferred ancestral sequence at that node (by circling that 
letter at the node).  If multiple ancestral sequences are possible at each node, please pick one of them 
(e.g. the answer A/T is not acceptable)

A C G T

A 5 3 -1 0

C 2 5 0 -2

G 0 1 5 2

T -1 -1 2 5



 7.5 Greedy clustering

Most of the clustering approaches described above require the computation of all pairwise distances between a
set of sequences, i.e. the running time is proportional to n2, where n is the number of sequences.  Given the 
large size of datasets commonly seen in current research (millions to billions of sequences), such algorithms 
are impractical.

An alternative is provided by greedy clustering algorithms, exemplified by CD-hit (Li and Godzik 2006). The 
basic algorithm is as follows:

1. sort the sequences in decreasing order of their lengths
2. pick a sequence not assigned to a cluster – this sequence becomes the center of a new cluster
3. compare all unassigned sequences to already computed cluster centers, first using a quick k-mer 

distance approach, then checking the promising alignments with a full Smith-Waterman algorithm.
4. repeat from 2.

The reason sequences are first sorted by length is to avoid incorrect clusterings.  Since the only comparisons 
are between a sequence and the cluster center, the distance between two non-center sequences is implicitly 
bounded by triangle inequality. If the clustered sequences can be longer than the center, this property no 
longer holds, as shown below.

    C                      T                       G                     T                            A                        T

A    C    G    T

A    C    G    T

A    C    G    T

A    C    G    T

A    C    G    T



Note that only sequences within a prescribed radius (in terms of similarity) from the cluster center are added 
to a cluster – the goal of the algorithm is to create clusters that are fairly tight.

This basic algorithm can be implemented in various flavors: 
• the sequences could be indexed making it easy to find all the sequences that match a given cluster 

center (approach used in DNAclust (Ghodsi, Liu et al. 2011))
• the clusters could be indexed, making it easy to find the appropriate cluster center for each sequence
• the algorithm can be sped up by relaxing the criteria that define the distance from the center of a cluster

(e.g. the clustering tool UClust (Edgar 2010) does not implement the full dynamic programming 
algorithm).

The choice of flavor depends on the specific problem being addressed and has an important impact on the 
runtime.  Assume, for example, that the number of actual clusters in the data is K and the number of sequences
is N.  The original CD-hit algorithm requires a runtime of O(N f(K)) where f(K) represents the time needed to 
search one sequence against the database of cluster centers (in a trivial implementation f(K) = K as each center 
is searched independently of the others).  DNAclust requires a runtime of O(K f(N)) as the centers are searched
against the rest of the sequences.  For highly similar sequences, DNAclust has an advantage as the index 
constructed from the sequences can be quite efficient.  For more dissimilar sequences, CD-hit has an 
advantage.

An interesting phenomenon occurs in the case of sequences that cannot be well clustered.  In this case we fall 
into the realm of the 'curse of dimensionality' – in high-dimensional spaces all points are relatively close to 
each other.   As a result clustering becomes prohibitively expensive, requiring O(N2) time.  To see this, imagine 
a collection of 501bp sequences that we want to cluster at a 1% divergence rate.  Assume we only look for 
mismatches – i.e., two sequences are clustered together if they differ by at most 5 mismatches.   For every given

sequence s, we can find 3⋅ 53⋅ (500
5
)≈ 95⋅ 1012 different sequences that differ from s in exactly 5 locations 

within the first 500 bp and have a mismatch in the 501st position.  All of these sequences need to be fully 
checked before deciding whether they should be clustered together with s.

ACAGGTACTCA-
ACACGTACTCAG
ACAG-TACTCAT

Figure 15: Incorrect clustering when cluster center is short. The two sequences differ from the cluster center by 
one edit, however they differ from each other by 3 edits contradicting the triangle inequality.  The contradiction
is due to the last mismatch which is not captured in the distance between each sequence and the cluster center.



 8 Genome assembly

(for more information see: http://www.cbcb.umd.edu/research/assembly_primer, (Pop 2009, Nagarajan and 
Pop 2013)

 8.1 Introduction

Sequencing technologies can only "read" short fragments from a genome.  Reconstructing the entire sequence 
of the genome, thus, requires that these fragments be joined together in a jigsaw-puzzle-like process.  Note 
that, in order for the reconstruction to even be possible, the individual sequences must be sampled from 
random locations in the genome.  Also, enough sequences must be sampled to ensure that the individual 
sequences overlap, i.e. enough information is available to decide which sequences should be joined together. 
The process through which the sequences are generated is called "shotgun sequencing", and involves the 
random shearing (through a physical process) into small fragments of a collection of copies of the genome of 
interest.  

 8.2 Is assembly possible? Lander Waterman statistics

Note that it is not even clear that the assembly of a genome from small pieces should be possible.  Given that 
the process through which the sequences are generated is random, it is possible that certain parts of the 
genome will remain uncovered unless an impractical amount of sequences are generated.  

To assess the theoretical feasibility of the assembly of shotgun sequencing data, Eric Lander and Mike 
Waterman developed a statistical analysis based on Poisson statistics (Lander and Waterman 1988).  Briefly, if 
some events occur uniformly at random (e.g. the start of a sequencing fragment along a genome can be 
assumed to be chosen uniformly at random), the number of events occurring within a given time interval is 
represented by a Poisson distribution.  

Given an average "arrival rate" λ (# of events occurring within a given interval of time), the probability that 
exactly n events occur within the same interval is expressed by the formula:

f (n ,λ)= λn e− λ

n!

In the context of sequencing we are interested in finding intervals that contain no events (n=0) - these would 
represent gaps in the coverage of the genome by sequences.

The Lander-Waterman statistics estimate the number of gaps in coverage (conversely the number of 
contiguous DNA segments) that can be expected given the following set of parameters:

• G – genome length

• n – number of sequences

• L – length of sequences

• c = nL/G – depth of coverage (number of times genome over-sampled by the set of sequences)

• t – the amount by which two sequences need to overlap in order to computationally detect this overlap

• σ = (L-t)/L

Among other numbers, the L-W statistics provide estimates for the expected number of contigs: ne− c σ

http://www.cbcb.umd.edu/research/assembly_primer


As can be seen from the figure above, the expected number of contigs rapidly decreases once coverage exceeds 
about 8-10-fold, i.e. after over-sampling a genome by about 10 times, the assembly should be theoretically 
possible.

 8.3 Shortest common superstring and greedy algorithm

A simple formulation of the assembly problem as an optimization problem phrases the problem as the Shortest
Common Superstring Problem: find the shortest string that contains all the sequences as substrings.  In other 
words, find the most parsimonious "explanation" for the set of sequences.   A fair amount of work went into 
this problem in the 80s-90s – the problem was shown to be NP-hard, and a series of approximation algorithms 
were developed that approach an approximation factor of 2 (the reconstructed string is at most twice as long as
the optimal) (Tarhio and Ukkonen 1988). 

A simple greedy algorithm can be proven to yield a 4-approximation, however it is conjectured that this 
algorithm is actually 2-optimal, given that no example has yet been found where the greedy assembly 
algorithm has generated a worse approximation.

The greedy assembly algorithm proceeds as follows:

1. compare all sequences in a pairwise fashion to identify sequences that overlap each other.

2. pick the sequences that overlap each other the best and merge them

3. repeat step 2 until no more sequences can be merged, or the remaining overlaps conflict with existing 
contigs.

While this algorithm is only an approximation, it has been extremely successful in practice – most early 
genome assemblers (phrap, TIGR Assembler, CAP) relied on this simple greedy heuristic, and were successful 
in reconstructing a range of genomes.  

 8.4 Graph formulations for assembly

The parsimony definition of assembly implicit in the SCS problem can be easily seen not to be relevant in a 
biological setting, primarily due to the presence of repeated DNA sequences (repeats) within the genomes of 
most organisms.  These redundant sequences would be collapsed into a single "unit" by any algorithm that 
attempts to solve the SCS problem.

Instead other optimization criteria have been proposed that attempt to capture the biological nature of the 
problem.  Myers proposed, for example, that we should phrase the assembly problem as the task of 
reconstructing a layout of the sequences that is consistent (in terms of Kolmogorov statistics) with the 
characteristics of the random process that generated the sequences (Myers 1995).  Unfortunately this 
formulation is hard to translate into a practical algorithm, though it is important to keep in mind especially in 
the context of assembly validation.



Instead, most modern assemblers formulate the assembly as a graph traversal problem.

 8.4.1 Overlap-layout-consensus/string graph

A first formulation creates a graph that represents each sequence as a separate node, and creates an edge 
between any two nodes whose corresponding sequences overlap.  In this formulation, we want to find a 
traversal of the graph that uses all the sequences, each exactly once (you cannot use a same sequence in 
multiple places in the genome), i.e. we are looking for a Hamiltonian path – a well known NP-hard problem.  
This formulation dates to the early 80s in the work of Esko Ukkonen and colleagues (Peltola, Soderlund et al. 
1984).    

Recently, Myers has shown that through a few simplifications, including the removal of transitive edges, the 
problem can be rephrased as a Chinese Postman problem (find the shortest tour that traverses each edge in a 
graph at least once) - a problem that can be solved in polynomial time (Myers 2005).  The transformed graph is 
termed the assembly string graph, and the paper describing this concept is listed on the course website.

 8.4.2 DeBruijn graph

An alternative formulation for the assembly problem arose form early explorations of a sequencing technology
called "sequencing by hybridization".  In this approach, one could find out if a given k-mer  occurred in the 
genome being sequenced, i.e. the assembly problem could be phrased as:

Given the collection of all k-mers (strings of length k) in a genome, reconstruct the genome's sequence.

In some sense, this problem is equivalent to a shotgun process that generates reads of length exactly k, and 
which guarantees that exactly one read starts at each position in the genome (perfect coverage).  

Pavel Pevzner formulated this problem in the context of de Bruijn graphs (Pevzner 2001): a de Bruijn graph of 
order k is a graph that contains all strings of length k-1 from a given alphabet as nodes, and contains an edge 
between two nodes if the corresponding strings overlap by exactly k-2 letters.  De Bruijn graphs have been 
discussed earlier in Section 3.9.2 as the automata that generate de Bruijn sequences.  In other words, each k-
mer in the genome is represented by two nodes in the graph connected by an edge.  In the context of assembly 
we are looking at the subgraph of the complete deBruijn graph that contains just the k-mers present in the 
genome (as inferred from the set of reads).  

As we are trying to find an assembly that contains all the k-mers of the genome, we are looking for a path 
through the graph that visits every edge at least once (edges visited multiple times are repeats), i.e. a Chinese 
Postman path, problem which can be solved in linear time.  Note that if we can infer from experimental data 
(e.g. from the number of sequences containing a particular k-mer) the number of times we need to visit each k-
mer, the problem becomes NP-hard – we are looking for a Chinese Postman path of a given length.  Finding a 
longest or fixed-length path in a graph is generally NP-hard.

 8.4.3 Complexity results

The formulation of assembly as a variant of the Chinese Postman problem implies that the assembly problem 
can be solved in polynomial time.  This is only partly true – a solution to the assembly problem can be found in
polynomial time, however there are an exponential number of possible solutions, i.e. the problem is 
underconstrained (Kingsford, Schatz et al. 2010).  Adding additional constraints, such as adding information 
about the multiplicity of repeats, generally results in an NP-hard variant of the problem.

Just how many possible Eulerian tours are in a graph (assuming an Eulerian graph, e.g. as generated from the 
Chinese Postman path by duplicating certain edges)?  The answer can be fairly easily computed for directed 
graphs (though it's intractable in undirected graphs).  The reasoning is based on a simple algorithm for finding



an Eulerian tour:

1. Pick an arbitrary node in the graph n

2. Construct a directed spanning tree having n as a root, such that all the edges are pointing upwards (the 
tree is a collection of directed paths connecting the leaves with the root)

3. Start traversing the graph in a greedy fashion, starting from n – after entering a node, leave the node 
using an edge that does not belong to the spanning tree, if possible. In other words, whenever a node is 
encountered on the traversal of the graph, the unique spanning tree edge leaving this node (linking the 
node to its parent) is traversed last.

This algorithm completes only after finding an Eulerian tour – the requirement that the tree edge is the last 
visited ensures that there is always an "out", thus the algorithm cannot get stuck before visiting all the edges in
the graph.

Thus, the number of possible tours can be computed as a function of two terms: (i) the number of spanning 
trees in the graph; and (ii) the different possible traversals of the graph once the spanning tree is fixed.  The 
latter is simply the product of all different permutations of the edges exiting each node in the graph (minus the
spanning tree edge), i.e.:

N Euleriantours= N spanning trees∏v∈ V (G ) (outdeg (v )− 1) !

 8.4.3.1 Counting spanning trees

The number of spanning trees in a graph can be computed in polynomial time by examining the adjacency 
matrix A of the graph (for edge j-k, with j < k, Ajk = 1 and Akj = -1).  More specifically, the computation focuses 
on the Laplacian matrix of the graph: L = AAT. Kirchhoff's theorem states that the number of spanning trees of 
the graph is the product of the non-zero eigen values of the Laplacian matrix divided by the number of 
vertices:

N spanningtrees=
1
n
λ 1λ2. ..

Equivalently, this number is the same as any cofactor of the Laplacian matrix.  Note that the Laplacian matrix 
is simply a matrix that contains the degree of the graph nodes along the main diagonal (Lii = deg(i)) and -1 for 
every edge j-k in the graph (Ljk = Lkj = -1) and 0 for all other entries.

The proof is not immediately obvious, however a very basic intuition can be obtained by noting that once we 
choose a directed edge j->k to become part of the spanning tree, we are effectively eliminating a row (j) and a 
column (k) from the adjacency matrix of the graph, thus selecting the other edges can proceed by analyzing the
matrix minor defined by row j and k.  The similarity to the computation of a determinant should be apparent.

 8.4.4 Theory vs. practice

As shown above, the assembly problem can be shown to be NP-hard under a number of formulations.  
However, these theoretical results contradict the empirical observation that even simple heuristic algorithms 
can generate correct assemblies in most situations. I.e. the instances encountered in practice are not necessarily 
complex.

Niranjan Nagarajan and myself  (Nagarajan and Pop 2009) tried to more precisely determine the boundaries of
this disagreement between theory and practice, specifically we parametrized the assembly complexity as a 
function of the relationship between read length (L), overlap length (o), and the length of the repeats (R) found 
in the genome.  Below is a quick summary of the results.  For full details see the paper (linked from the 
syllabus site).



Case 1: R < o – repeats do not confuse the assembly, any algorithm will find the unique correct solution.

Case 2: R > 2L-o – the assembly problem is equivalent to the Chinese Postman problem – a solution (not 
necessarily the correct one) can be found in polynomial time.  Also, in this case a solution to the Shortest 
Common Superstring problem is not a solution to the assembly problem.

Case 3: o <= R <= 2L-o – the solution to the assembly problem is the same as the solution to the SCS problem. 
Assembly is NP-hard.

Note, that as a corollary, if sufficient coverage is generated to ensure that o = L-1, the third case disappears, i.e. 
the assembly is either trivial, or underconstrained, but not NP-hard.

 8.5 Genome assembly validation

 8.5.1 Introduction

A common thread in scientific computation is the fact that often the scientific answer that we seek is simply 
defined by the output of the program used to compute the answer. Given the fact that the results often 
represent previously unknown information, there is no external way to validate these results.  In other words, 
any bugs in the software are virtually undetectable. 

There are two recent examples that provide a compelling demonstration of this fact: 

• A paper in the journal Science had to be retracted once the authors realized that the results reported in 
the paper had been incorrectly computed due to a "+1/-1" error in their code (Miller 2006).  The mistake 
was only detected a few years later when another research group failed to reproduce the results (in this 
case the scientific result was the 3D structure of a previously uncharacterized protein)

• When the records of climate researchers came under scrutiny due to an email leak, scientists and 
skeptics found out that the software that computes the climate models, and has predicted the effects of 
global warming, is full of bugs and poorly written code (see e.g., (McCafferty 2010)). 

• As described in Section 4.2.2, the widely used BLOSUM 62 matrix has been miscalculated (Styczynski, 
Jensen et al. 2008).

Thus, a major challenge in bioinformatics and other scientific fields is to develop approaches for ensuring that 
the software is correct even in the absence of external means for validation.  Below I describe several ways in 
which validation can be achieved in the context of genome assembly.

 8.5.2 Intrinsic measures of assembly quality

As mentioned in the assembly lecture, one of the early definitions of the goal of assembly is to determine a 
layout of the sequences that is consistent with the random process that generated these sequences in the first 
place.  While this goal is difficult to achieve during the assembly process, the divergence between the output of
the assembler and the characteristics of the random shotgun process can be used to assess whether the 
assembly is correct.

Note that, in general, we do not fully know the characteristics of the sequencing process, however useful 
information can still be achieved by assuming the process to be fully random (in practice many biases cause 
deviations from randomness).

 8.5.3 Coverage measures

If we assume that the shotgun process is truly random, we can expect the depth of coverage (# of reads 



spanning a particular location in the genome) to not vary much along the genome (other than random 
fluctuations from the expected value).  Regions where too many reads pile up can be inferred to represent 
collapsed repeats.  

There are several ways in which overly-deep regions can be determined.  A simple k-mer based measure can 
be determined as follows:

• for each k-mer count its number of occurrences in the set of reads. Let this value be nr(k).  In unique 
regions this value should roughly equal the coverage c, while in repeats with R copies, the value will be
approximately cR

• for each k-mer count its number of occurrences in the consensus of the contigs produced by the 
assembler. Let this value be nA(k).  In unique regions this value will be 1, while in repeats it will be R.

• for each k-mer compute nr(k)/nA(k) - if the assembly is correct (number of copies of a repeat in the 
genome matches the number of copies in the assembled contigs) the ratio will be roughly c.  If, 
however, certain repeats are collapsed, the ratio will be correspondingly higher - allowing us to detect 
regions where a collapse might have occurred.

A more principled solution is to statistically evaluate whether the pile-up of reads is truly "surprising" given 
our expectation of the random process generating the sequences.  Such an approach is implemented as the A-
statistic used in Celera Assembler (Myers, Sutton et al. 2000).  Specifically, assume that the expected arrival rate
(number of DNA sequences divided by length of genome) is α, then the probability that k sequences  start 
every ρ base-pairs within a unique region is:

p (ρ , k )= (ρα)k

k !
e− ρα

while in a two-copy collapsed repeat we have:

p2(ρ , k )= (2ρα)k

k !
e− 2ρα

The log ratio of these two values represents the A-statistic:

Astat= log2(
p(ρ , k )
p2(ρ , k )

)= log2(

(ρα)k

k !
e−ρα

(2ρα)k

k !
e−2ρα

)= log 2(e)ρα− k

Negative values indicate that more "arrivals" occur within a region than expected, i.e. the region represents a 
collapsed repeat.

It is important to note that the background arrival rate α needs to be estimated from the assembly data, as 
generally the genome size is not known before running the assembly. This creates somewhat of a chicken and 
egg problem – information obtained from the assembly is used to evaluate the assembly.  If errors are rare, this 
process should, however, allow the detection of outliers (misassemblies), as the misassemblies cannot 
significantly affect the statistics.

 8.5.4 Mate-pair consistency

In addition to sequences, a typical sequencing experiment also provides mate-pair information - information 
specifying that pairs of sequences are separated by a given (approximate) distance, and that they have a 
specific orientation (usually the two sequences are in opposite orientations – originate from different DNA 
strands).  In a correct assembly, the constraints imposed by this information should be preserved (modulo 



experimental error), i.e. the paired sequences must be oriented and spaced as inferred from the parameters of 
the sequencing project.  Any deviations from this ideal indicate the presence of a potential misassembly.

Several approaches can be used to detect disagreements between the experimental data and the information 
found in the assembly.  First, one can easily find groups of mate-pairs that are "broken"  because their 
corresponding endpoints are incorrectly oriented with respect to each other.  These indicate the presence of 
rearrangements or inversions in the assembly with respect to the correct structure of the genome.

In order to identify regions in the assembly where the distance between mates is different from the 
experimentally derived values, we can phrase the problem as a statistical hypothesis test:

• First compute the "correct" mate-pair spacing by averaging the lengths of mate-pairs found within the 
assembly.  As described under coverage statistics, this approach may be confused by misassemblies but 
should generally work if there are few misassemblies.  Also, it is usually necessary to "second-guess" 
the biologists that generated the data given that the methods for measuring mate-pair sizes are highly 
inaccurate.  The result of this step are the values Ltrue, and SDtrue, the mean length and standard 
deviation of the "correct" mate-pairs.

• Second, use a sliding window through the assembly to identify the mate-pairs spanning each particular
location in the assembly.  Compute Lassembly and SDassembly from the local mate-pair neighborhood

• Compare Ltrue and Lassembly using a statistical test, e.g. the t-test: 
|Lassembly− Ltrue|

SDtrue

The t-test provides an estimate of the statistical confidence in the disagreement between the two  length 
estimates. The sign of the difference in length indicates whether the assembled region has been collapsed or 
expanded with respect to the correct assembly of the genome.  This simple test is also called the C/E statistic 
(Zimin, Smith et al. 2008).

 8.5.5 Detecting "missing" data

It is not uncommon for an assembler to only use part of the data provided as input, i.e. not all the sequence 
reads end up being used in the final assembly.  Valuable validation information can be obtained by mapping 
the unassembled sequences onto the assembly, in order to explain why they were not used by the assembler.  
Several cases are possible:

1. Unassembled reads to not match the assembly – this indicates the reads are likely contaminant 
sequences.

2. Unassembled reads match the assembly perfectly – possibly bug in the assembler but that does not 
affect the quality of the reconstruction (though it can affect coverage estimates)

3. Unassembled reads match the assembly imperfectly, as shown in the figure below – this indicates that a
tandem (2-copy) repeat has been collapsed into a single copy.  Sequences spanning the joint between 
the two copies cannot fit in the resulting assembly and get tossed out.



Note: this signature within the assembly of Bacillus anthracis pinpointed actual biological variants which then 
were used as a forensic signature in the investigation of the 2001 anthrax attacks (Rasko, Worsham et al. 2011).

 8.5.6 Likelihood assembly scores

The quality of an assembly can also be evaluated through a probabilistic framework, using a Bayesian 
approach similar to approaches commonly used in signal processing.  Specifically, assume we are given an 
assembly A and a collection of reads R.  We would like to compute the likelihood of the assembly given the set 
of reads, i.e., P(A|R) = P(R|A) P(A) / P(R) . When comparing two different assemblies of the same data we can 
ignore the probability of the set of reads P(R). Also, without any prior information on the probability of the 
assembly P(A) we can assume this value to be constant across similar assemblies.  Note that these 
simplifications make it impossible to obtain an actual objective value of assembly likelihood/quality.  The value
of the likelihood can, however, be used to compare the relative quality of different assemblies of a same 
dataset.

Computing P(R|A) requires some assumptions about the sequencing process that generated the set of reads.  
Under the simple assumption that reads are generated uniformly, and there are no errors (a completely 

random shotgun process), the probability of any read r is simply pr=
nr

2
G where nr is the number of 

occurrences of the read in the assembly of size G.  The factor 2 arises from the fact that each read can be 
sampled with equal probability from either DNA strand.  The likelihood of the assembly is simply the product 
of the individual read probabilities.

When taking into account sequencing errors, one can compute the probability of a particular read given an 
assembly as the joint probability of all possible placements of the read within the assembly.  This value can be 
simply (but expensively) computed using the standard Smith-Waterman algorithm with a slight modification –
instead of picking the maximum score within the recurrence, we select the product of the scores in the adjacent
dynamic programming cells.  Of course, we need to define the alignment score in a probabilistic setting such 
that the match and mismatch scores correspond to the probability of a match or substitution.  This approach is 
essentially the same as the forward algorithm from Hidden Markov Models.

This basic approach was introduced recently independently in three publications (Clark, Egan et al. 2013, 
Ghodsi, Hill et al. 2013, Rahman and Pachter 2013).

 8.5.7 "Validation" as a tool for detecting genomic variation

The tools for assembly validation described above are not only valuable for assessing the quality of a genome 

Illustration 1: Alignment of reads to the assembly in a region where a tandem repeat has been
collapsed.



assembly. Rather, there is strong interest in understanding how the genome structure varies within a 
population.  E.g., in the human population there is increasing evidence that the genomes of different people, 
and even within a same person, differ by more than just simple mutations: entire segments of DNA are 
duplicated, deleted, or rearranged between the genomes. Also, certain phenotypic traits (e.g. hair/skin color) 
might be caused by differing copy numbers for certain genes.

In the context of genomic variation, we want to map sequences/mate-pairs generated from a person's DNA, to 
a reference sequence.  Discrepancies between the two datasets indicate places where there are structural 
differences between the two genomes.  

 8.6 Exercises

1. The output of a genome assembler consists of detailed information regarding the placement of each 
read inside the genome.  Specifically, for each read we know the coordinates of its beginning and end 
inside the genome (e.g. read i is represented by the pair (bi, ei) ). Due to the randomness of the 
sequencing process, some locations in the genome are covered very deeply while others are covered 
sparsely.  Describe an algorithm that computes, for a given assembly, the highest depth of coverage, as 
well as one of the locations (coordinates along the genome) where this occurs. The running time of this 
algorithm should not exceed O(n log n), where n is the number of reads in the assembly.  



 9 Miscellaneous

 9.1 Optical maps

 9.1.1 Introduction

Optical mapping is a technology that allows us to experimentally determine the relative position of certain 
landmarks (usually restriction sites – places where a specific restriction enzyme can cut the DNA – usually 
recognized by a specific 6-8 bp sequence) along a stretch of DNA.  Unlike sequencing, optical maps provide 
long range information – the fragments being mapped are usually on the order of several 100s of kbp – 
however the information provided is sparse.  Thus optical mapping is useful as a complement to sequencing. 
Also, it can be used as a cheaper way (than sequencing) of getting information about the global structure of a 
genome.

Computationally an optical map is just an ordered list of sizes, together with estimates of the error in the size 
estimates, representing the list of gaps between adjacent restriction sites.

 9.1.2 Mapping algorithm

I'll focus here on just the problem of aligning an experimentally determined optical map to an in silico optical 
map constructed, e.g. from the output of an assembler.

Formally, the experimental map is represented as the array:

emap= {(ok , s k) , k= 1,n }

where ok and sk are the size and standard deviation for fragment k.

The in silico map is:

ismap= {ek , k= 1,m }

where ek is the size of the corresponding fragment

Aligning the two maps can be performed pretty easily using a dynamic programming algorithm similar to the 
sequence alignment algorithm.

Specifically, V[i, j] is the score of aligning the first i fragments from the experimental map to the first j 
fragments from the in silico map.

The recurrence equation is:

V[i, j] = mink<i,l<j { V[k, l] + score(k..i, l..j)}

where score(k..i, l..j) is a score of how well the set of fragments between k..i, and l..j, match each other.  This 
score can be defined as a combination of a Χ2 score and a penalty for missed sites:

score(k .. i , l .. j)=
(∑ s= k

i
os−∑ t= l

j
e t)

2

∑ s= k

i
ss

2
+C (i− k+ l− j)

where C is a constant that can be used to tune the contribution of the two components.



 9.1.3 Interesting research directions

• Can optical maps be used to guide genome assembly?

• How do you efficiently align maps to an already sequenced genome to identify structural variants?

• How do you efficiently align two maps to each other to identify structural differences?
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