
CompostBin: A DNA composition-based algorithm for bin-
ning environmental shotgun reads

Sourav Chatterji1, Ichitaro Yamazaki2, Zhaojun Bai2, Jonathan A Eisen∗1,3,4

1UC Davis Genome Center
2Department of Computer Science, UC Davis
3Section of Evolution and Ecology, UC Davis
4Department of Medical Microbiology and Immunology, UC Davis

Email: Sourav Chatterji - schatterji@ucdavis.edu; Ichitaro Yamazaki - yamazaki@cs.ucdavis.edu; Zhaojun Bai - bai@cs.ucdavis.edu;

Jonathan A Eisen - jaeisen@ucdavis.edu;

∗Corresponding author

Abstract

A major hindrance to studies of microbial diversity has been that the vast majority of microbes cannot be

cultured in the laboratory and thus are not amenable to traditional methods of characterization. Environmental

shotgun sequencing (ESS) overcomes this hurdle by sequencing the DNA from the organisms present in a

microbial community. The interpretation of this metagenomic data can be greatly facilitated by associating

every sequence read with its source organism. We report the development of CompostBin, a DNA

composition-based algorithm for analyzing metagenomic sequence reads and distributing them into

taxon-specific bins. Unlike previous methods that seek to bin assembled contigs and often require training on

known reference genomes, CompostBin has the ability to accurately bin raw sequence reads without need for

assembly or training. It applies principal component analysis to project the data into an informative

lower-dimensional space, and then uses the normalized cut clustering algorithm on this filtered data set to

classify sequences into taxon-specific bins. We demonstrate the algorithm’s accuracy on a variety of simulated

data sets and on one metagenomic data set with known species assignments. CompostBin is a work in progress,

with several refinements of the algorithm planned for the future.
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Background

Microbes are ubiquitous organisms that play pivotal roles in the earth’s bio-geochemical cycles. Their most

visible effects on human well-being arise through their roles as mutualistic symbionts and hazardous

pathogens. The study of microbes is crucial to our understanding of the earth’s life processes and human

health. Most of our knowledge about microbes has been obtained through the study of organisms cultured

in artificial media in the laboratory. Although this approach has provided profound biological insights, it is

inadequate for studying the structure and function of many microbial communities. One obstacle has been

that the vast majority of microbes have not been cultured and may not be culturable [1]. Even though

culture independent methods such as 16S rRNA surveys [2, 3] have been developed, they are unable to

simultaneously answer two fundamental questions: Who is out there? and What are they doing? The

application of genome sequencing methods is revolutionizing this field by enabling us for the first time to

address those two questions for unculturable microbial communities [4–6]. These techniques, called

environmental genomics or metagenomics, study unculturable communities by analyzing the pooled

genomes of all the organisms present in the community. The genomic data obtained can be analyzed to

make inferences about both who is out there and what they are doing (e.g., [7]).

In one specific metagenomic method, environmental shotgun sequencing (ESS), DNA pooled from a

microbial community is sampled randomly using whole genome shotgun sequencing. Thus, ESS data is

made up of sequence reads from multiple species. This adds an additional layer of complexity compared to

single-species genome sequencing, as it requires analysis of the metagenomic data in order to associate each

sequence read with its source organism. Therefore, a critical first step in many metagenomic analyses is the

distribution of reads into taxon-specific bins.

The difficulty of accurately binning ESS reads from whole genome data remains a significant hurdle in

metagenomics. The taxonomic resolution achievable by the analysis depends on both the binning method

and the complexity of the community. For instance, binning into species-specific bins can be achieved in

low-complexity microbial communities (e.g., the dual-bacterial symbiosis of sharpshooters [7]). However,

the problem becomes more difficult in high-complexity communities with hundreds of species, such as the

Sargasso Sea [4] and the human distal gut [6]. Because of these difficulties, many metagenomic studies

(e.g., [8]) have resorted to analyzing at the level of the metagenome, essentially treating a microbial

community as a bag of genes. This is not a satisfactory solution. Identifying and characterizing individual

genomes can provide deeper insight into the structure of the community [7].

A variety of approaches have been developed for binning: assembly, phylogenetic analysis [9], database
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search [10], alignment with reference genome [11] and DNA composition metrics [12,13] Most current

binning methods suffer from two major limitations: they require closely related reference genomes for

training/alignment and they perform poorly on short sequences. To overcome the second difficulty, almost

all current binning methods are applied to assembled contigs. However, most of the current generation

assemblers can be confounded by metagenomic data since they implicitly assume that the shotgun data is

from a single individual or clone. Therefore, we believe that assembly is risky when binning and that it is

necessary to analyze raw sequence reads to get an unbiased look at the data.

To overcome the above-mentioned disadvantages of other binning methods, we have developed

CompostBin, a binning algorithm based on DNA composition. CompostBin can bin raw sequence reads

into taxon-specific bins with high accuracy and does not require training on currently available genomes.

Like other composition-based methods, it seeks to distinguish different genomes based on their

characteristic DNA compositional patterns, termed ”signatures.” For example, one of the most commonly

used DNA metrics measure the frequency of occurrence of Kmers (oligonucleotides of length K)in a DNA

sequence. Kmer frequencies have been used to distinguish between organisms since the 1960s [14]. With

the explosion of available genomic data in the 1990s, Karlin and colleagues were able to establish that the

relative abundances of various dinucleotide sequences (the dinucelotides odds ratio) is a genomic

signature [15]. Subsequently, taxon-specific biases were also found in the frequencies of Kmers with lengths

of four or more, leading to the use of a wide variety of methods exploiting this bias as a

signature [12,13,16–19].

Unfortunately, many composition-based binning algorithms do not perform well on short fragments. Poor

performance in shorter fragments is caused by the noise associated with the high dimensionality of the

feature space. When measuring the frequency of Kmers, the feature vector has 4K dimensions (associated

with measuring the frequencies of 4K possible oligonucleotides of length K). Thus, for instance, if one

looks at the frequency of hexamers in 2kb fragments, the dimensionality of the feature space is twice the

length of the sequenced fragments.

CompostBin employs a new approach to deal with the noise arising from the high dimensionality of the

feature vector. Instead of treating all components of the noisy feature space equally, we extract the most

”important” directions and use these components for distinguishing between taxa. The technique employed

is Principal Component Analysis (PCA) [20], a multivariate analysis method previously applied in diverse

biological areas ranging from ecology [21] to codon usage in genes [22] and even visualization of

metagenomic binning results [23]. The normalized cut clustering algorithm used to cluster sequences into
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taxon-specific bins is further guided by information from phylogenetic markers. We tested CompostBin on

a wide variety of data sets and demonstrated that it is highly accurate in separating sequences into

taxon-specific bins, even when processing raw reads of short sequences.

Results

CompostBin was coded in C and Matlab on a 64bit Linux Machine. It is publicly available for download

from the Eisen Lab website. As shown in the overview in Figure 1, CompostBin extracts the ”principal

components” of the DNA composition data and then uses PCA to project that data into a

lower-dimensional space for further analysis. As shown in Figure 2, the algorithm can distinguish sequences

from various species using just these first three principal components. Next, CompostBin uses the

normalized cut clustering algorithm [24] to segment the data set into taxon-specific bins. Since the

accuracy of phylogenetic assignment for reads containing phylogenetic marker genes is very high [9], we

devised a semi-supervised approach which uses the phylogenetic information to guide the clustering

algorithm. Simulated data sets were designed to evaluate the accuracy of CompostBin in binning

metagenomic data sets of low and medium complexity. Additionally, we tested the data set on

environmental shotgun reads from the gut of a glassy-winged sharpshooter [7]. Details of the test data sets

and CompostBin’s performance are provided in the next two sections.

Test Data Sets

Metagenomics being a relatively new field, standard data sets for testing binning algorithms have not yet

been developed. One obstacle to their development has been that the ”true” solution is still unknown for

the sequence data generated by most metagenomic studies. To test the accuracy of a binning algorithm,

one can instead simulate the shotgun sequences that would be obtained from a combination of organisms of

known genome sequences. We used ReadSim [25], a publicly available program, to simulate Sanger

sequences from known genomes. The sequence reads from multiple genomes were pooled to simulate the

challenges of metagenomic sequencing. When designing our simulated data sets, we took into account

several variables that affect the difficulty of binning: the number of species in the sample, their relative

abundance, their phylogenetic diversity, and the differences in GC content between genomes.

Since environmental shotgun data is influenced by factors that may not be reflected in simulation

experiments, we also tested CompostBin on a publicly available metagenomic data set whose solution is

well accepted. Data Set R1 contains sequence reads obtained from gut bacteriocytes of the glassy-winged
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sharpshooter, Homalodisca coagulata. The data sets used for testing CompostBin are described in Table 1,

and experimental details are provided in Methods.

Performance

CompostBin’s accuracy in classifying reads from the test data sets is reported in Table 1. The percentage

of misclassified reads is less than 6% in 11 of the 13 data sets. The highest error rates measured were

8.01% for Data Set S3 (sequences from E. coli and Y. pestis) and 7.24% for Data Set S5 (sequences from B.

anthracis and L. monoytogenes). In both cases, the phylogenetic distance between genomes is

comparatively small. However, the results from Data Set S1, which contains sequences from Bacillus

halodurans and Bacillus subtilis, show that, in some instances, the algorithm can distinguish at the species

level with high accuracy. The low error rate for the sharpshooter data set (R1) demonstrates the ability of

the algorithm to handle the peculiarities of environmental shotgun data.

Discussion

In this paper, we report the development of a new approach to the taxonomic binning problem associated

with the analysis of metagenomic data. Accurate binning is a crucial step in the application of

environmental shotgun sequencing to the study of microbial communities. The problem of binning is

intertwined with the fundamental questions of genomic signatures. Does the genome of every organism have

a unique signature that distinguishes it from the genomes of all others? If so, what is the minimum length

DNA sequence required to distinguish between two organisms? Even though it has been demonstrated that

DNA-composition metrics such as the dinucleotide odds ratios are genome signatures [15], previous studies

have typically worked with long sequences. In this study, we demonstrate that shrewdly analyzed Kmer

frequency data from short sequences can also provide a signature. The principal novel aspect of our

method is the observation that the high-dimensional Kmer frequency data for short sequences is noisy, and

that one can deal with the noise by projecting the data into a carefully chosen lower-dimensional space.

This lower-dimensional space is determined by the principal components of the data. In a sense, it, too, is

a ”genome signature” that can be used to classify even short sequences into taxon-specific bins.

We used the frequencies of hexamers (oligonucleotides of length 6) as the metric for our analysis of short

sequences. The choice of hexamers was motivated by both computational and biological rationale. Since

the length of the feature vector for analyzing Kmers is O(4K), both the memory and the CPU

requirements of the algorithm become infeasible for large data sets when K is greater than six. Using
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hexamers is biologically advantageous in that, being the length of two codons, their frequencies can capture

biases in codon usage. Similarly, hexamer frequencies can detect genomic biases resulting from the

observed avoidance of specific palindromic words of lengths 4 and 6 from genomes due to the presence of

restriction enzymes [26]. It should be noted that the frequencies of lower-length words are linear

combinations of hexamer frequencies. For example:

f(AAAAA) = f(AAAAAA) + f(AAAAAC) + f(AAAAAG) + f(AAAAAT ). Thus, our PCA-based

method implicitly takes into account any biases in the frequencies of lower length words.

Our method of analysis is based primarily on DNA composition metrics and, like all such methods, it

cannot distinguish between organisms unless their DNA compositions are sufficiently divergent. Thus, our

method would probably be unable to distinguish between strains of the same species. We believe that an

ideal binning algorithm would also utilize additional types of information, such as assembly (depth of

coverage and overlap information) and population genetics parameters. We have taken an initial step in

this direction by using taxonomic information from phylogenetic markers to guide the clustering algorithm.

We intend to develop other hybrid methods in the future.

An ideal binning system would, like CompostBin, not require training of the algorithm with data from

sequenced genomes. This is critical for success when binning environmental shotgun data because more

than 99.9% of microbes are currently unculturable and unlikely to be represented in the training data set.

Even closely related organisms living in different environments may have divergent genome signatures. For

example, Bacillus anthracis and Bacillus subtilis have widely differing GC content and genome signatures.

One should also keep in mind that the currently available genomes are not a phylogenetically random

sample, but rather are a highly biased collection of biomedically interesting genomes combined with an

overabundance of strains of model organisms such as Escherichia coli.

CompostBin is a work in progress, with several refinements of the algorithm planned for the future.

• In the analyses reported here, we used PCA as the projection method for choosing the

lower-dimensional space. Since PCA misses nonlinear structures of the underlying variables, we plan

to look at alternative projection methods such as Projection Pursuit [27], ICA [28], and kernel

PCA [29].

• CompostBin analyzes only the first three principal components in the data set. We plan to explore

alternative approaches for choosing the optimal number of principal components (e.g., [30]).

• The clustering algorithm employed captures the global geometry of a data set using its k-nearest
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neighbor graph. The highly accurate binning of the data sets reported in this paper was obtained

using a fixed value of k = 6. However, the optimal value of k may depend on the characteristics of

each individual data set. We plan to explore a technique which can automatically determine the

optimal k through capture of the global geometry of the input data set.

• The similarity between two connected sequences in the nearest-neighbor graph was measured by the

exponential inverse of their normalized Euclidean distance. We plan to explore alternative criteria for

sequence similarity which have the potential to improve binning.

• The running time of our program can be improved by developing more efficient data-structures and

by utilizing other numerical tools [31–33] to compute the principal components of the original data

set and the eigenvectors of the similarity matrix.

• We observed that the separate clusters of rRNA genes can be outliers in many archaeal genomes and

cause errors in the binning algorithm. Therefore, binning accuracy can be improved in future

investigations by removing those genes prior to performing the DNA composition-based analyses.

• We plan to explore other potential applications of our algorithm to the study of genome structure

and its variations within a single genome.

Methods
Generation of Test Sets

Genomic sequences of bacterial and archaeal isolate genomes were downloaded from the NCBI GenBank

database [34]. ReadSim was used to simulate paired-end Sanger sequencing from isolate genomes with an

average read length of 1, 000 bp. The reads from various isolates were then combined in ratios

corresponding to their relative species abundance in the data set to yield a simulated metagenomic data set

of known composition.

In our experiments, we simulated the sequencing of low- to medium-complexity communities in which the

number of species ranged from two to six and their relative abundance ranged from 1:1 to 1:14. We

included species of varying degrees of phylogenetic relatedness in order to test the ability of the program to

discriminate between sequences at the species, genus, and family levels. The 12 simulated data sets created

are described in Table 1.

In addition, we tested the algorithm on a metagenomic data set containing reads obtained from gut

bacteriocytes of the glassy-winged sharpshooter. The original study [7] had used phylogenetic markers to
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classify the sequence reads into three bins: reads from Baumannia cicadellinicola in Bin 1, reads from

Sulcia muelleri in Bin 2, and reads from the host and miscellaneous unclassified reads in Bin 3. Due to the

heterogeneity of Bin 3, the accuracy of the algorithm was tested only on its ability to distinguish between

reads from Bin 1 and Bin 2.

The CompostBin Algorithm

The input to CompostBin consists of raw sequence reads, along with mate pair information and the

taxonomic assignment of reads containing phylogenetic markers. Either the number of abundant species or

the number of taxonomic groups in the data set is provided to help the algorithm determine the number of

bins in the output. This information can be obtained by analyzing the reads containing genes for ribosomal

RNA or other marker genes [11]. In the simulation experiments, the number of bins is set to the number of

species in the simulation.

Feature Extraction by PCA

Mate pairs are joined together and treated as a single sequence because they are highly likely to have

originated from the same organism. Each sequence being analyzed is initially represented as a

4, 096-dimensional feature vector, with each component denoting the frequency of one of the 4, 096

hexamers. As a result, all the sequences are initially represented as an N × 4, 096 feature matrix A, where

N is the number of sequences being analyzed. PCA is then used to decrease the noise inherent in this

high-dimensional data set by identifying the principal components of the feature matrix A.

The PCA algorithm [20] filters the noise and removes redundant variables to arrive at a new basis for

expressing the data set. Furthermore, by using PCA, we may be able to find new underlying variables

which reveal additional details about the mathematical structure of the system. Determining the number

of principal components required for analysis is crucial to the success of the algorithm. Too few

components and some important information may be lost. Too many components increases the noise in the

data unnecessarily. When using PCA to bin sequences, use of just the first three principal components is

adequate to separate sequences from different species. Figure 2 shows that for Data Set S5 which contains

two alphaproteobacteria with similar GC content, almost complete separation is achieved by using only the

first two principal components.
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Bisection by Normalized Cuts

The projection of the data matrix A into the first three principal components produces an N × 3 data

matrix Ap. A clustering algorithm is then applied to Ap to separate the N points into taxon-specific bins.

A bisection algorithm is used to bisect a data set into two bins as detailed below. If the data set is to be

divided into more than two bins, this algorithm is used recursively. Figure 3 shows pseudocode for the

bisection algorithm. Given the projected matrix and phylogenetic markers as inputs, the procedure first

computes the weighted graph over the sequences where the edge weights measure the similarity between

corresponding sequences. Then, the normalized cut clustering algorithm [22] is employed to bisect the

graph such that sequences from the same taxonomic group stay together. Computation of Similarity

Measure: As described earlier, the 4, 096-dimensional feature vector is projected into the first three

principal components, and each sequence is represented as a point in 3-dimensional space. The clustering

algorithm initially creates a 6-nearest neighbor graph G(V,E,W ) to capture the structure of the data set.

The vertices in V correspond to the sequences, and an edge (v1, v2) ∈ E between two sequences v1 and v2

exists only if one of the sequences is a 6-nearest neighbor of the other in Euclidean space. The

nearest-neighbor graph reveals the global relation of the data set through this easily-computable local

metric [35]. Each edge between two neighboring sequences v1 and v2 is weighted by their similarity

w(v1, v2), which is defined as the exponential inverse of their normalized Euclidean distance:

w(v1, v2) =

{
e−

d(v1,v2)
α if (v1, v2) ∈ E,

0 otherwise,

where d(v1, v2) is the Euclidean distance between v1 and v2, and

α = max
(v,u)∈E

d(v, u).

Semi-supervision Using Phylogenetic Markers: Marker genes, such as the genes that code for ribosomal

proteins, are one of the most reliable tools for phylogenetically assigning reads to bins. Since these marker

genes appear in only a small fraction of the reads, we used taxonomic information from 31 phylogenetic

markers [36] to improve the clustering algorithm. This taxonomic information is provided to the binning

algorithm as a label for each sequence, with each label corresponding to a single taxonomic group.

Sequences without a taxonomic assignment are assigned the label ”unknown.” A semi-supervised approach

can then be employed [37,38] to incorporate this information into the clustering algorithm.

Our binning algorithm uses the simplest approach to update the nearest neighbor graph. Two vertices v1

and v2 are connected with the maximum edge weight (i.e., w(v1, v2) = 1) if the corresponding sequences
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are from the same taxonomic group, and the edge between v1 and v2 is removed (i.e., w(v1, v2) = 0) if they

are from different groups.

Normalized Cut and its approximation: Given a weighted graph G(V,E,W ), the association between two

subsets X and Y of V W (X,Y ) is defined as the total weight of the edges connecting X and Y :

W (X,Y ) =
∑

x∈X,y∈Y

w(x, y).

The normalized cut algorithm bisects V into two disjoint subsets U and Ū such that the association within

each cluster is large while the association between clusters is small, i.e., the normalized cut value NCut is

minimized, where

NCut =
W (U, Ū)
W (U, V )

+
W (U, Ū)
W (Ū , V )

.

The minimization of NCut avoids the bias toward small segments, which results if the cut value is

minimized without normalization [39]. Since finding the exact solution to minimize NCut is an NP-hard

problem, an approximate solution is computed using a spectral analysis of the Laplacian matrix of the

graph [24]. To generalize the algorithm for more than two bins, the binning algorithm uses PCA and the

normalized cut algorithm iteratively, as described below.

Generalization to Multiple Bins

If the data set needs to be divided into more than two bins, an iterative algorithm is used and sequences in

one of the bins are projected into their first principal components and bisected recursively until the

required number of bins is obtained. Figure 4 shows the pseudocode describing the algorithm. A set of

bins, B is kept, where each element of B is a set of data points belonging to the same bin. The set B is

initialized to be the singleton set {A}, where A contains all points in the data set. At each subsequent step

of the algorithm, the bin with the lowest normalized cut value is bisected. The bisection continues until

either B has the required number of bins or we no longer have a good bisection as measured by the

normalized cut value. If none of the bins in B have a small normalized cut value, the algorithm terminates.

Both the principal components and the normalized cut of A can be computed using the Lanczos

method [40] in O(N) space and O(Nm) time, where N is the number of sequences in A and m is a small

constant representing the number of Lanczos iterations. By using kd-tree [41], a 6-nearest graph is

computed in O(N) space and O(N log(N)) time. Computing and updating the similarity measures takes

O(N) and O(l2max) time, respectively, where lmax denotes the maximum number of phylogenetic markers

for a particular species in A.
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In order to separate A into K bins, the bisection algorithm needs to be called at most 2K − 1 times.

Therefore, the running time of the whole algorithm is bound by O(NK(log(N))).
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Figures
Figure 1 - Overview of the Binning Algorithm
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Figure 1: High-level overview of the CompostBin algorithm. Each sequence is represented by a 4, 096-length
feature vector, where each component of the vector represents the frequency of one of 4, 096 hexamers. Thus,
N sequences are initially represented as a 4, 096×N feature matrix. Principal Component Analysis is used
to project the data into a lower-dimensional space. A semi-supervised normalized cut algorithm is used to
segment the data set into two subsets. The algorithm is applied iteratively on the subsets to obtain the
desired number of bins.
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Figure 2 - Separation of sequences by PCA

Figure 2: Figure illustrating the separation of sequences according to species by using just the first few prin-
cipal components of the data. This data set contains sequences from two alphaproteobacteria, Gluconobacter
oxydans and Rhodospirillum rubrum, which have GC content of 0.65 and 0.61, respectively. The data set is
projected into the first two principal components. Sequences from Gluconobacter oxydans are represented in
red, whereas sequences from Rhodospirillum rubrum are represented in blue.
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Figure 3 - The Bisection Algorithm

Figure 3: Pseudocode describing the bisection algorithm used to bisect a data set into two taxon-specific
subsets. A is the feature matrix and L contains the labeling information for A. This procedure is used
iteratively by the binning algorithm described in 4.
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Figure 4 - The Binning Algorithm

Figure 4: Pseudocode describing the iterative PCA and the normalized cut algorithm used for binning. A
is the N × 4, 096 feature matrix, with each 4, 096-length feature vector representing a sequence. L contains
labeling information obtained from phylogenetic markers, and K is the the desired number of bins. Lines
in bold starting with “//” contain comments intended to help understand the code. Note that the calls to
Bisect in Line 11 can be avoided at the cost of extra memory if one stores the optimal cut for each set in
B during the calls to Bisect in Lines 5 and 14.
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Tables
Table 1 - Test Data Sets and Binning Accuracy

Table describing the simulated and real data sets used to test the binning algorithm. Each data set is

assigned a unique ID for reference. IDs of simulated data sets start with S and IDs of experimental data

sets start with R. The GC content of each species’ genome is listed in squared-brackets and can be used for

assessing the diversity of DNA composition. The taxonomic levels are obtained from IMG [42] and can be

used for assessing the phylogenetic diversity. The error rate of the binning algorithm on each test set is

shown in the last column.

ID Species Ratio
Taxonomic

Error
Differences

S1 Bacillus halodurans [0.44] & Bacillus subtilis [0.44] 1:1 Species 5.74%
S2 Gluconobacter oxydans [0.61] & Granulobacter bethesdensis [0.59] 1:1 Genus 3.69%
S3 Escherichia coli [0.51] & Yersinia pestis [0.48] 1:1 Genus 8.01%
S4 Rhodopirellula baltica [0.55] & Blastopirellula marina [0.57] 1:1 Genus 1.98%
S5 Bacillus anthracis [0.35] & Listeria monocytogenes [0.38] 1:2 Family 7.24%

S6 Methanocaldococcus jannaschii [0.31] & 1:1 Family 0.56%Methanococcus mariplaudis [0.33]
S7 Thermofilum pendens [0.58] & Pyrobaculum aerophilum[0.51] 1:1 Family 0.21%
S8 Gluconobacter oxydans [0.61] & Rhodospirillum rubrum [0.65] 1:1 Order 1.15%

S9 Gluconobacter oxydans [0.61], Granulobacter bethesdensis [0.59], & 1:1:8 Family 2.28%Nitrobacter hamburgensis [0.62] Order

S10 Escherichia coli [0.51], Pseudomonas putida [0.62], & 1:1:8 Order 1.73%Bacillus anthracis [0.35] Phylum

S11 Gluconobacter oxydans [0.61], Granulobacter bethesdensis [0.59], 1:1:4:4 Family 5.28%Nitrobacter hamburgensis [0.62], & Rhodospirillum rubrum [0.65] Order

S12
Escherichia coli [0.51], Pseudomonas putida [0.62], 1:1: Species, Order

3.35%Thermofilum pendens [0.58], Pyrobaculum aerophilum [0.51], 1:1: Family, Phylum
Bacillus anthracis [0.35], & Bacillus subtilis [0.44] 2:14 Kingdom

R1 Glassy-winged sharpshooter endosymbionts - - 5.9%
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Additional Files
Additional file 1 — CompostBin Code

File 1, in tar gunzipped format contains the CompostBin source code in C/Matlab.

Additional file 2 — Test Data Sets

File 2, in tar gunzipped format contains the data sets that was used to test CompostBin’s performance.
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