AR AR ) T Y Y YT Y Y Y Y Y YY Y Y Yy
13

TIYIIYIYN)Y

L J
s
L ]
.0
L]
L J

.'
B
.
.
-
.
.
s
s

a'.E
e
e
e
..‘
o "

M
P
.
.
e
.

L
L
P
.
.

..
[
e
.
.
.

-
Yo%
P
o'
.

e
seey

Ilv ..ﬁﬂw
) L"h“'..

‘.
o
.'

YT YT ITYIYYYYY Y™

RERRRR RN
....44:144JJJ4
Y Y YT YT YYYYYYYS
P T T T IYIYYTYYYYY

T YT YYYYYYYS
.44.44JJ4J

LT IYYY L ‘ ]
...,,.ﬂ.,4444444444 .4 ".bb....“w

Y Y Y Y Y Y Y Y Y Y Y Y YYYYYY YN

T I T I N N N N N N I I T N T T NI YTYYYY
JJ444444444441.,
. T I I YT YT Y Y YT Y Y Y YYN Yy
A ARRRRRARRRRRRRRRRE
Y Y Y YT YT Y YYYY Y Y Y Y Y
J.J.JJJJ‘4444;;4/,.,.J¢,;
JJJJJJJJJdtn;.;
JJJJJJa;aa;.«-
T I T IIYIYTOYY Y
1 SRRRRRRRRRRRRRRRRRR

,Q/ XXX k
21 YYYYYYYYYYSY Y Y Y

Af.4444 I RARRARRRRA
JJ//J.aaa‘-a
J.JJJJJJJ;;;;;;

TEXL)L) )
SERRRRRRRRRRRRE
JJJ TIT I Y 4.4..

e YYNYYNYNY Y Y
fqbbeJJJ.J

JJJ/JJJJJJ/aaa_

K TYYYYYYIYSN Y Y
IMJAJJJJJ,.1444..
YYNYNNNYN

J

JJJJlJIJa/.J,,

N \
TYYYYYYY Y 1
FYYYHYHHYYSY Y Y Y y v
.JJJJJ;;;a/zJ,,,,
PR LSRR RRRRRRR RN
JJ44444¢¢4.
_ YYYYYYYYY Y
JJJJ44444444_4.
E PR RRRRRRRRE

OO XY Y1
Y'Y YY Yy
JJJJJ414/4,,,
JJdddttn....
T YYY Yy Yy
SRR RRRRRRE
XXX

y
\

vy

.
4
-*

2

-
.

.

9%s%°
o " :
e _n_ 9
*_S_"
.e_"
"
.'..
- “.

.
e "
.
L
..
v
e
w

.
o:o:o
o
%%

%%

w*e%s%s
soese

s

.
o
e
e
oo
~
.

"“b...» 4

YT IIIYIIOOYYY
..l.cclaadeJd.
Y Y Y Y Y Y Y Y Y Y YYYYY

.,‘..¢‘4414444444J X
T YT YT T YT YT Y Y YYYYYYYYYS 'y

Y T I T I I IYYYIYYYY Y
.444444JJJJJ )
..444444444JJ;J

L L Y Y Y YEYYYY Y

.,,..41444144444Jd

») TYYYYYH

TYYYYYYYY Y

: Hﬂb,f TYYYYYY

| YYYY Y

Y'Y

3 JORRE X XA XL LY

: Jﬂd TEL) /JJJJJ;«zJJIJ,
LA PR RRRRERERRRE

Y T T I T I T T I YT IYTYTYTYTOYTYTYTYTYT YT : » i : PR RRRRR AR AR R AR R AR AN
T O T T T T T T T T T T T T T T T YT YT YT Y Y Y Y Y Y Y Y Y Y Y Y Y YYYAYYANYAYYRMYYMY




. .44444;4;1114‘,4,
_.c!.:!:.!. Z?ij.,...,.
- i AdeJ4444444.4..
e seee X TY Y Y Y Y Y Y Y Y Y Yy
T YT Y Y YTy Y Yy Yy Yy
JJJJJ44444¢,..,.
J4J444,44.444.
FTYYYYYYYYY Y
PR R RRRRRRERRRERRE
J YT I T T I YT Y Y Y Y Y Y Y Yy
) J.J.JJdJa«.....
XTI NYYYY

JJJJ T Y Y YT YYYYYYY Y
4 p AR R R RRRRR

T I I Iy
PR RRRRRRRRRE
JJJ.JJJJJIIIJI,.J,,,

f/f/ffuuﬂ ﬁq é ﬁ X %maqﬁ/f/“ﬁ%MLL.“..“.,. , Yy
‘tfcccc OO X L
T %

EELLY)
2020 RRRRRRRRERR

JfJJJJJJA.J‘Jl..

r'. YYYHYHYYYY Y YN Y Y

' JJJ,JJJJ;41/444,,
f.............. . . TYY Y YT Y Y YY Y Yy
w-

-e

Olooooooooooooooooooooooooooooooooooooooooooooooooooooooooo r ® PR RRRRARRARAN
AL L) seenee L L L L ) } PR RRARARRRNE

»
»

LAAAAAAL L L L L L L LAL) LAAAL L L L L LD LAA AL L LA L L L L D)

TYYYYYYY Y
TYYYYYY9YY Y

S0P/ 0 000 00QP N s agsssssIglRssssse
‘TP RN R " PR L R R R RS PR

UYL

e A AL R R P A ARl s R AR
Y ) D) O OOy
LI ) T T

\ \ -
Y v ._/,,44444444,:4: .
Y YYY YN

NN YYYYYYYYS JJJJLJLJJ b

FYYIYYY Y Y -
Y Y YYYNS S AJJJJJJJJJJJJJ .f./

,z/,4J1441.4444

LI}
YT YT YT ITYIYYYYYYYSY

.

T YTYTYYYYSY
YY) ,.,J.‘ﬂﬂﬂﬂﬂﬂﬂﬂﬂ .0
"o

. » .
e Mh Rk Rk
Y Y Y Y Y Y Y Y Y YYYYYYYS JJJJ ) L) ; i : JJ J4444J4J444,444
..,.::,.:4::44...54“?44 ) .C«..JJJJJJJJ:,.
YT Y I Y YYYNYYYSY TYITIIYYNNYS
,,, \(ARRARRAN S /.14;41.444444444141J444JJJ JJ JJJ JJJJJJJJJJJJJJJJJJJ4444444144.J
T T T I T I T YT YTYTYTYYTYYYTYYOYTYTYTY » » » i PRRRRRARRRARAR AR R R R

T T T T T T T T T T T T T T YT YT Y Y Y Y Y Y Y Y Y Y Y YA YYAYYYYNMY Y




Objective

x Given an unknown, environmental BNA seguence:

x Make a taxonomic:-assignment by-comparing the
sample sequence 1o existing database sequences
that have already been taxonomically labeled”

* There Is no attempt to characterize new species!



MEGAN — Metagenome Analyzer

x Huson et al. 2007

x Software that enables rapid-analysis of large
metagenomic data sets

x MEGAN: 3 is the latest released version of the program

x  Available for UNEX, Windows, and Mac OS X



MEGAN Processing Pipeline

x Reads are collected from a sample using any: random
shotgun segquencing: protocol

x A sequence comparison of-all reads against one or
more sequence datalbases Is performed

x MEGAN processes the results of the comparison and
assigns each read to a taxon using the lowest common
ancestor (LGA) algorithm



MEGAN Processing Pipeline

DNA Sequence
reads omparison

metagenome sequence companson
data data .

Interactive

analysis and
visualization
using Megan

genome

; reference databases
specific

Figure 1. For a given sample of organisms, a randomly selected collection of DNA fragments is
sequenced. The resulting reads are then compared with one or more reference databases using an
appropriate sequence comparison program such as BLAST (Altschul et al. 1990). The resulting data are
processed by MEGAN to produce an interactive analysis of the taxonomical content of the sample.




BLAST Options

® min-score — an alignment must achieve min-score to
be included in the analysis

® [op-percent — retain only: those matches whose score
IS within top-percent of the highest score

® WiN-score — It amatch scores above win-score, only
consider other matches above win-score

® min-support — at least min-support reads must be
assigned to a taxon for those assignments to count



* Campylobacter fetus

¢ Campylobacter jejun

Campylobacter |

° Campylobacter coli RM2228

‘:Campy!obar_ter lari RM2100 Je—

’ 3 *Campylobacter upsaliensis RM3195
@ampylobacloralos

*Helicobacter pylon J99
yjcobacter

- N
\ Helicobacter hepaticus ATCC 51449 &

Helicobacleraceae

€ Wolinella succinogenes )¢

=0 Thiomicrospira denitrificans ATCC 33889

Figure 2. On the right, we list the three BLASTX matches obtained for a specific read r from the mammoth data set, to sequences representing

Campylobacter lari, Helicobacter hepaticus, and Wolinella, respectively. The LCA-assignment algorithm assigns r to the taxon Campylobacterales, shown
on the left, as it is the lowest-common taxonomical ancestor of the three matched species.




Data Analyses with MEGAN

® Sargasso Sea data set

x Mammoth data set

® Species identification from short reads

® [ coll K12
» B. bacteriovorus HD100



Sargasso Sea Data Set

» \enter et al. 2004

x Samples of seawater were collected, and organisms of
size 0.1=3 ym were extracted and seguenceo

x From four individual sampling sites, ~1.66 million reads
of average length 818 bp were recovered

x Biological diversity and abundance were measured
using environmental assemblies, and by analyzing six
phylogenetic markers (rRNA, RecA/RadA, HSP 70,
RpoB, EF-Tu, and Ef-G)



Revealing “Microheterogeneity”
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Distribution of Species Comparison
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Figure 4. The distribution of reads from Sample 1, pooled Samples 2-4, and the weighted average
of these two data sets, over 16 major phylogenetic groups, as computed by MEGAN. For the sake of
comparison, the diagram also shows the relative contribution of organisms to these groups, as esti-
mated from Venter et al. (2004) by averaging over the values for all six genes that are reported there.




Mammoth Data Set

» Poinar et al. 2006

x 1g bone sample taken from a mammoth that was
preserved in permafrost for 28,000 years

x Obtained 302,692 reads of mean length 95 bp

x BlLASTZ was used to determine reads that came from
the mammoth genome, and BLASTX was used to
characterize the remaining environmental diversity



Mammoth Data Set Summary

( -
cellular organisms 46380 | \ > Bacteria 16972
Q . : Q Archaea 761

I

O Eukaryota 19841

“© other sequences 6

Figure 5. High-level summary of a MEGAN analysis of the mammoth
data set, based on a BLASTX comparison of the 302,692 reads against the
NCBI-NR database.

Bit score threshold of 30, discarding any isolated assignments



Species ldentification from
Short Reads

x \Vhat Is the minimum read- length required to identify
Species In a metagenomic sample?

x |dea: simulate short reads from a Known genome, and
then evaluate accuracy: of assignments

x WO organisms were chosen for this purpose—E. coli,
and B. bacteriovorus

® [ hese two organisms were also randomly resequenced
(and then subsequently analyzed)



E. coll Simulation Besults

Table 1. Results for E. coli simulation

35 bp 100 bp 200 bp 800 bp

Enterobacteriaceae 22% 64% 73% 85%
Gammaproteobacteria 24% 77% 86% 94%
Proteobacteria 25% 83% 89% 96%

For average read lengths of 35, 100, 200, and 800 bp, we sampled 5000
sequence intervals from random locations in the complete genome se-
quence of E. coli K12 and then processed the reads with MEGAN. Here we
report the percentage of reads classified as Enterobacteriaceae, Gamma-
proteobacteria, and, even more generally, Proteobacteria. The number of
false-positive assignments of reads was ~0%.

Sasically no false positives



E. coll Reseguencing KResults

Escherichia coll 128
[ Q Escherichia coll Q157 H7 §

Cammaproteocbacteria 1226 Escherichia 135
obacteria 1303 . (“)”

ol
\_/ -

)I\('II,LL'I'.I coli CFT073 20

\
) Escherichia coll K12 31

il . v . O Salmonella enterica SC-B67 4
Emerpbacteriaceae 1052

O Shigella flexneri 2a str, 301 3

p—— sy © Haemophilus somnus 129PT 2

Figure 7. MEGAN analysis of 2000 reads collected from E. coli K12
using Roche GS20 sequencing, based on a BLASTX comparison with the

NCBI-NR database.

A few false positives



B. bacteriovorus Simulation Results

Table 2. Results for B. bacteriovorus simulation

35 bp 100 bp 200 bp 800 bp

B. bacteriovorus 25% 88% 94% 98%
Deltaproteobacteria 26% 89% 95% 99%

Proteobacteria 26% 90% 97% ~100%

For average read lengths of 35, 100, 200, and 800 bp, we sampled 5000
sequence intervals from random locations in the complete genome se-
quence of B. bacteriovorus HD100 and then processed the reads with
MEGAN. Here, we report the percentage of reads classified as B. bacte-
riovorus, Deltaproteobacteria, and, even more generally, Proteobacteria.
The number of false-positive assignments of reads was ~0%.

Sasically no false positives



B. bacteriovorus Resequencing Results

A cellular organisms 1488 Bdellovibrio 1371
Prot tobdctona 1410

— O '—'—O—' Bdellovibrio bacteriovorus HD100
Deltaprowobactwia 1374
Bacteria 147

root 1497 O

Cammaproteobacteria 10
O—'—'—'—' ®* Nitrosococcus oceani ATCC 19707 2

Proteobacteria 70 s s s —+—() Anaeromyxobacter dehalogenans 2CP-C 5
Bacteria 260 Deltaproteobacteria 21

cellular organisms 350 : ‘ o= s———s——+—2 Pelobacter propionicus DSM 2379 2
C{§> . . '—O Bdellovibrio bacteriovorus 12
root 386@ . . . . =0 Dechloromonas aromatica RCB 3

-—O Magnetococcus sp. MC-1 4

*—O Leptospira interrogans 3

Figure 8. MEGAN analysis of 2000 reads collected from B. bacteriovorus HD100 using Roche GS20
sequencing. (A) Analysis based on a BLASTX comparison with NCBI-NR. (B) The same analysis, but with
all hits matching database sequences representing the B. bacteriovorus HD100 genome removed, mimick-
ing the situation in which the reads originate from a genome that is not represented in NCBI-NR.




MEGAN, In Summary

x | CA algorithm is simple and conservative

x Does not make many: false positive assignments, even
when the unknown sample sequence does not exist in
the datalbase

® Species can be identified from short reads

x Most of the work has been In developing easy to use
software with useful exploratory features and
visualizations, many. of which were not mentioned



Limitations of BLAST

x BLAST searches use /ocal alignments, not global
alignments, which leads to-a loss: of information

x Bl AST searches do not consider the population
genetic and phylogenetic issues associated with
Species Identification

®x [he measures of confidence associated with BLAST
searches (E-values) represent significance of local
similarity, not significance of taxonomic assignment



SAP — Statistical Assignment Package

= Munch et al. 2008

x SAP is

an automated method for DINA barcoding which

iIncludes database sequence retrieval, alignment, and
phylogenetic analysis

x Most importantly; provides statistically meaningful
measures of confidence

x | ke M

EGAN, does not attempt to identify new species




SAP - An Overview

Database Retrieval
search

Sample- ’ Homologues Annotated
sequence ‘ sequence DB

\Clustalw

Assignment h Sampled h Alignment
trees

Summary Tree
statistics sampling

FIGURE 1. Flowchart of the assignment procedure. A set of homologues is compiled using information from Blast searches and annotation
from NCBI's Taxonomy database. The relevant sequences are retrieved from GenBank and aligned using ClustalW. Based on the resulting
multiple alignment a large number of phylogenetic trees are sampled and these are then used to calculate posterior probabilities of assignment.




Bayesian Approach

x Estimate the probability the sample sequence Is part of
a monophyletic group of database seguences

P(X,D|XeT)P(XeT,
P(XeT | X,D) = (X,D| XeT)P(XeT)

Y P(X,D|XeT)P(XeT)

x X IS the sample-sequence, I is taxon /, and D Is the set
of database sequences representing k disjoint groups



Computing the

Posterior Probability

x [he posterior probability iInvolves a summation over all

Multiple integral over a
Model parameters

0ossible phylogenetic t

rees, and for each tree, a
I combinations of evolutionary

®x Hence, the posterior probability cannot be computed
analytically, even for small trees

® However, a method ca

lled Markov Chain Monte Carlo

(MCMCQC) can be used to sample trees in proportion to
their posterior probabilities



Sampling the Posterior Distribution

5000 steps taken




FINAiNg HOMOoIogs

x |[deally, each sample sequence would be compared
with all datalbase sequences

® |[nstead, a heuristic Is required to extract a limited
representation of the database

x [hus, SAP uses BLAST to find datalbase homologs



FINnding Homologs, lethoo

x |nclude only matches whose BLAST score s at least
half that of the best match (relative cutofr)

x [nclude only the best match:from each Species

x [nclude up to 30:species homologs, 10 genera, 6
families, 5 orders, 3 classes,; and 2 phyla

x |f the relative cutoff-has been reached before 50
nomologs have been included, allow other
representatives from species already included




MSA and Phylogenetic Analysis

®x [he sample sequence and the set of homologs are
aligned using ClustalW

x A program, likely:some Kind of MrBayes kernel,
performs the Bayesian phylogenetic analysis

x All seguences except the sample sequence are
topologically constrained to agree with the NCBI
taxonomy

x 10,000 trees are sampled from the posterior
distribution and analyzed to obtain probabillities of
assignment to all taxa in the set of homologs



Jaxonomic Assignment

Sister clade:

Implicit rooting

!

Agave (genus) Alismatales (order)

raceae (family)
rum (genus)

sample-
sequence

FIGURE 2. Assignment of the sample sequence in each sampled tree is done by assuming the root implied by the taxonomic annotation of
homologues and then recording the consensus taxonomy for all members of the sister clade from the highest taxonomic level to the most specific
level shared by all clade members.

The probabillity of forming a monophyletic group with a given taxon is calculated as the fraction of
sampled trees where the sister clade to the sample sequence is a member of that taxon.




Propabilities of Assignment

Eukaryota (superkingdom) 100.00%
Viridiplantae (kingdom) 100.00%
Streptophyta (phylum) 100.00%
Liliopsida (class) 100.00%
commelinids (subclass) 100.00%
Poales (order) 100.00%

Restionaceae (family) 100.00%
| Mastersiella (genus) 0.29%
_I_.Masters/e//a digitata (species) 0.29%

| Ceratocaryum (genus) 9.93%
_I_.Cefatocaryum argenteum (species) 9.93%

| Willdenowia (genus) 88.18%
EW//Idenowia glomerata (species) 27.69%
Willdenowia rugosa (species) 28.76%

b C2NNOMoIs (genus) 0.37%
Hypodiscus (genus) 0.23%
_I_.Hypodiscus aristatus (species) 0.23%

FIGURE3. Graphicrepresentation of assignment. The taxonomic tree shows all taxa obtaining positive probabilities of assignment. For clarity,
assignment probabilities below 50% are shaded. In the example shown, sequence evidence is substantial but too ambiguous to allow a reliable
assignment at the species and genus level. The evidence at family level, however, is decisive.




Computational Time

x [akes time to download sequences from GenBank

x Multiple alignment is fast, a couple of minutes

x [he MCMG analysis'is the bottleneck, averaging 1 hour
x Post-processing of MCMG output may take 10 minutes

x (and this Is for each sample sequence!)



Benchmark Analyses

x Cytochrome Oxidase | (COI) gene for the
class Insecta

® 10,804 seguences

x tRNA-Leu (trnlk) gene for the class
Lillopsida (monocots)

= 040 sequences




Benchmarking Kesults
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FIGURE 4. Distributions of assignment probabilities for correct and wrong assignments. At the levels of species, genus, and family, 90%,
99%, and 99% of assignments of Insecta sequences are correct and 51%, 90%, and 100% of assignments of Liliopsida sequences are correct. Wrong
assignments are generally associated with low probabilities, whereas most correct assignments achieve probabilities above 95%.




Comparison with BLAST

Insecta . Liliopsida

1.00

Sensitivity
Sensitivity

4 SAP post. prob. & SAP post. prob.
© Blast log(e-value) ' O Blast log(e-value)

070 0.75 080 085 090 0.95

I I T I T 1 | T | I I
002 004 006 008 010 0.12 : 0.2 0.3 0.4 0.5 0.6

1-Specificity 1-Specificity

FIGURE 5. ROC (receiver operating characteristic) curves summa-
rizing the tradeoff between sensitivity and specificity in the range of
most to least stringent assignment criteria used. Sensitivity is the frac-
tion of all sequences that are correctly assigned, specificity is the frac-
tion of assignments that are correct. The performance of SAP exceeds
that of Blast for any sensitivity-specificity combination except when
blindly accepting all assignments.




Reanalysis of Neanderthal Sequences

x [N a number of studies, longer ancient DNA sequences
were assembled from shorter reads

® However, what If some of these reads were not of
Neanderthal origin?



|

f T T T T T T
0 50 100 150 200 250 300 100 200

Assignment probability

El Sidron (Hypl) Feldhofert (Hypl)

Assignment probability

T T T f T I T T T T 1
50 100 200 0 50 100 150 200 250 300 350 100 200 300

Feldhofer2 (Hypl) Mezmaiskaya (Hypl) Monti Lessini (Hypl)

No fragment data available

Assignment probability

T [ 1 T 1 T T
50 0 50 100 200 100 150 200 250

Sclandina (Hypl) Vindija75 (Hypl) Vindija75 (Hypll)

FIGURE7. Summary of confidence analysis for published Neanderthal sequences. In each sub-figure, a bold bar represents the Neanderthal
sequence analyzed. The overlapping boxes above it each represent the assignment probability of the sequence fragment spanned by the box.
The dashed box represents the full inferred sequence, whereas shaded boxes represent individual contributing PCR fragments. For the Vindija75
sequences, no information on PCR fragments is available. The five short sequences not in GenBank obtain the following assignment probabilities:
Engis2 (Hypl): 0.88; LaChapelleAuxSaints (Hypl): 0.88; RochersDeVilleneuve (Hypl): 0.63; Vindija77 (Hypl): 0.87; Vindija80 (HypI): 0.89.




Bayesian MCMC Is Slow

x [he Bayesian approach to tree sampling required to
obtain a statistically: meaningful:confidence measure 1s
computationally:demanding

x [0 use SAP-on large datasets, such as environmental
samples, faster tree sampling approaches are needed



Fast Phylogenetic DNA Barcoding

x Munch et. al 2008. (not assigned reading)

x [ree sampling performed using neighbor-joining (Saitou
& Nel- 1987 ) and:non-parametrc:pootstrapping
(Felsenstein 1985).

x [his method of tree sampling is much faster than MCMC



Nelghbor-doining

» Neighbor-joining (NJ) selects a pair of taxa from the complete
set and constructs a new subtree that joins the pait, iteratively
building a tree In this manner

= Pairs of taxa are selected by-minimizing the following criterion:

» [utorial: http://artedi.ebc.uu.se/course/sommar/njoin/index.html



http://artedi.ebc.uu.se/course/sommar/njoin/index.html
http://artedi.ebc.uu.se/course/sommar/njoin/index.html

Notes on Neighbor-Joining

®x Each iteration step requires only:recalculating - one row. in
the Q matrix, leaving the initial:calculation of sequence
distances and the identification of the minimal entry in Q
as the only operations with O(L%) complexity

x [ranslates to very fast running times,; In practice

® [he constrained version of the algorithm simply ensures
that the (1, J) taxon pairs chosen are compatible with the
taxonomic backbone, and speeds up the algorithm even
more -aentifying the pair-tojoinis now linear in L




Comparing Bayesian MCMG to
Neighbor-doining with Bootstrapping

» 102 bootstrap samples vs. 10%iterations of MCMGC

x [he average difference between MCMGC and NJ
assignment probabilities is 5%

x [or assignment probabllities between 0.8 and 1.0, the
average difference is only 2.6%
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Figure 1. Histogram showing the difference in probabilities of
assignment to the correct species estimated using the
neighbour joining and MCMC.

The majority of the time, the deviation in estimated probabillity is small



MCMC vs. NJ
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Figure 2. Estimated probabilities of assignment to the correct
species using neighbour joining are plotted against the
estimate obtained using MCMC.

There Is better agreement when the assignment probability is large



MCMC vs. NJ
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Figure 3. ROC curves summarizing the trade-off between
sensitivity and specificity in the range of most to least
stringent assignment criteria used. Sensitivity is the fraction
of all sequences that are correctly assigned and specificity is
the fraction of assignments that are correct. Vertical bars
represent confidence intervals of the sensitivity statistic.

Triangles, NJ; circles, MCMUC.




MCMC vs. NJd, MCMC vs. BLAST
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Figure 4. Histogram illustrating the agreement in terms of
rank order obtained by sorting the set of homologues by the
~ assignment probability associated obtained neighbour joining
- with bootstrapping and maximum likelihood and MCMC.
The histograms show the average difference in rank order
~ for neighbour joining and BLAST from the one obtained
~ using MCMC.




MCMC vs. NJ

» Posterior probabilities and bootstrap proportions are
not expected to match closely

x [hey measure different guantities

® se different models of nucleotide substitution

x High variance in estimates due to relatively small
number of bootstrap replicates and MCMC iterations

® HOWEVE
for high
fast app

itis clear (i.e., the authors are convinced) that
oosterior probabilities, NJ can be considered a

roximation of MCMG



Reanalysis of Ancient DNA
Environmental Samples

x Previously published analysis of permairost samples
from Siberia and temperate sediments from New
Zealand (Willerslev: et al. - 2007)

x 130 bp fragments of the chloroplast rocl gene and
100-280 bp fragments of the vertebrate mitochondrial
165, 185, cytochrome b, and control region genes
were obtained using PCR

x [hese data were originally analyzed using BLAST along
with consensus NdJ trees for the vertebrate genes



Reanalysis of Ancient DNA
Environmental Samples: Results

x For the animal species, SAP:assignments overlap with
original ones, but are not in:complete agreement

x SAP was able tomake some assignments to a lower
taxonomic level

® Results emphasize the value of a confldence measure,
allowing some assignments to be rejected

x Also shows that SAP allows for greater sensitivity and
resolution than a conservative approach using BLAST



SAP Trial Run

x |nstalled SAP (version 1.0.8) and dependencies

x Downloaded an Insecta COl sequence from GenBank

P o~

<3 NCBI 2” \iha” SNucleotide

All Databases PubMed Nucleotide Protein Genome Structure PMC Journals Books

Search ' Nucleotide + | for | ( Go ) ( Clear)

Limits | Preview/Index | History | Clipboard | Details

Format: GenBank FASTA Graphics More Formats¥

GenBank: EU626559.1

Hypolimnas octocula haplotype 2 cytochrome c oxidase subunit | gene, partial cds; mitochondrial

>gi|183207910|gb|EU626559.1| Hypolimnas octocula haplotype 2 cytochrome ¢ oxidase
subunit I gene, partial cds; mitochondrial
ACGAATAAATAATATAAGCGATTTTCGATTACTACCCCCATCATTAATATTATTCATTTCTAGAAGAGTTGTA
CGAAAATCCGAGCAGCGAACAGCATCGAACAGTATATCCACCCCTATCTTCAAACATTCGCTCATCGCAGCGATCTT
CAGTAGATTTACCAATTTTTTCCCTTCACTTAGCTCCAATTTCCTCAATTTTAGCGACCTATTAATTTTAT
CACAACAATAATTAATATACCGAATTAATAATATATCATTTCGATCAAATACCATTATTTGTTTGAGCTGTT
GCAATTACAGCTTTATTGTTACTTTTATCTCTTCCTCTATTAGCACCTCGCCATTACCATACTTTTAACTG
ATCGAAATATTAATACCTCATTTTTTCACCCAGCTCCAGCACGTCATCCTATTCTTTACCAACA




SAP Trial Run

x |nvoked SAP with default parameters

x Found 43 significant homologs

48 homologs in set:
1 phyla: Arthropoda
1 classes: Insecta

1 orders: Lepidoptera
6 families: Papilionidae Hesperiidae Nymphalidae Pieridae Lycaenidae Sphingidae

27 genera: Protogoniomorpha Glaucopsyche Salamis Auca Albulina Hypolimnas Hyles
Mechanitis Melitaea Sevenia Antanartia Plebejus Joanna Eumorpha Rimisia
Aricia Yoma Precis Asterocampa Kallimoides Polygonia Dymasia Luehdorfia

Junonia Pieris Chilades Xylophanes

|Last accepted E-value is 8.974690e-111

Ratio of lowest to highest bit score is: 0.497886595867
WARNING: Diversity goal not reached.

Relative bit-score cut-off (0.50) at level: genus
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http://serine.umiacs.umd.edu/files/saphtml
http://serine.umiacs.umd.edu/files/saphtml

SAP, In Summary

x Statistical approaches provide measures of confidence
IN assignment

x SAP IS a modular framework with different options for
BLAST searches; alignment; and phylogenetic analysis

x More work would need to be done to make SAP truly
feasible for analysis of large metagenomic datasets



Conclusion

x MEGAN provides a numlber of useful features for
metagenomic analysis; but only: uses BLEAST for
taxonomic assignment

x SAP IS a more sophisticated framework for taxonomic
assignment, but requires more computation

x Suggestion: combine features of MEGAN and SAP



