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with length1. The standard base-calling procedure is to round the 
continuous intensities to integers. Consequently, long homopoly-
mers result in frequent miscalls: either insertions or deletions2.

We calculated the probability distributions of observing a given 
signal intensity for each homopolymer length by pyrosequencing 
the V5 region of 23 clones of known sequence (Online Methods). 
The sequences of these clones differed by at least 7%, and we 
could therefore unambiguously associate each flowgram with the 
sequence that generated it. We aligned flowgrams to their par-
ent sequences using an exact Needleman-Wunsch algorithm and 
then used all signal intensities from each homopolymer length to 
generate histograms (Supplementary Fig. 1). For lengths greater 
than 5 homopolymers, for which insufficient data was available to 
construct histograms (Supplementary Table 1), we used normal 
distributions with extrapolated parameters (Online Methods).

The starting point for our algorithm was the realization that 
we should work with the light intensities associated with each 
read, or flowgrams, rather than their translations into sequences. 
Intuitively two sequences can differ substantially, whereas their 
flowgrams can be similar. To use an example from a real dataset: 
the true sequence is ACTGGGG, which without noise and with 
nucleotides flowed in the order TACG, would give the flowgram 
0, 1, 1, 0|1, 0, 0, 4, where the | indicates a new series of the four 
nucleotides. Instead we observed 0.18, 1.03, 1.02, 0.70|1.12, 0.07, 
0.14, 4.65, a flowgram that is not that dissimilar but that trans-
lates into a sequence, ACGTGGGGG, with two insertions. Using 
the flowgrams and the distributions of observed intensities, we 
defined a distance reflecting the probability that a flowgram was 
generated by a given sequence3 (Online Methods). These dis-
tances were then used in a mixture model to define a likelihood 
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We present an algorithm, PyroNoise, that clusters the flowgrams 
of 454 pyrosequencing reads using a distance measure that 
models sequencing noise. This infers the true sequences in a 
collection of amplicons. We pyrosequenced a known mixture 
of microbial 16S rDNA sequences extracted from a lake and 
found that without noise reduction the number of operational 
taxonomic units is overestimated but using PyroNoise it can be 
accurately calculated.

Pyrosequencing as implemented by Roche’s 454 is a technology 
that generates a large number of intermediate length DNA reads 
through a massively parallel sequencing-by-synthesis approach1. 
The GS FLX implementation generates ~400,000 reads of ~250 
base pairs in a single run. In many environmental genomics 
applications of pyrosequencing, DNA is extracted from an entire 
microbial community, and a particular target region flanked by 
conserved primers is amplified by PCR before sequencing. This 
generates an amplicon dataset, in which every read stems from a 
homologous region, and the sequence variation between the reads 
reflects the phylogenetic diversity in the community. Because 
there is no cloning step, resequencing to increase accuracy is not 
possible and it is therefore vital to disentangle noise from true 
sequence diversity in this type of data.

During pyrosequencing, each base, in turn, is washed across a 
plate with hundreds of thousands of wells in which beads attached 
to multiple copies of a single DNA molecule are localized. If the 
first unpaired base in a well is complimentary to the incoming 
base, then synthesis occurs and through a series of chemical reac-
tions light is emitted. Subsequent synthesis and increased light 
emission will occur if a homopolymer is present. The pattern of 
light intensities, or flowgram, emitted by each well can then be 
used to determine the DNA sequence. The major source of noise is 
that the light intensities do not faithfully reflect the homopolymer 
lengths. Instead, a distribution of light intensities is associated 
with each length, and the variance of this distribution increases 
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Figure 1 | OTU number as a function of percentage sequence difference for 
90 pyrosequenced 16S rRNA gene clones of known sequence. (a,b) Results 
are repeated for complete linkage (a) and average linkage algorithms (b).
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of observing all the flowgrams assuming that they were generated 
from a set of true underlying sequences4. We used an iterative 
expectation-maximization algorithm to maximize this likelihood 
and obtain the de-noised sequences (Online Methods). The algo-
rithm first calculates the most likely set of sequences given the 
probabilities that each flowgram was generated by each sequence 
and then recalculates those probabilities given the new sequences. 
The procedure is then repeated until the algorithm converges. 
By considering the whole set of flowgrams, this noise removal 
method, which we refer to as flowgram preclustering, takes the 
context of a read into account when deducing whether it is noise 
or a genuinely novel sequence.

To test the algorithm, we applied it to the problem of deter-
mining the microbial diversity in a sample. In this case,we 
amplified a small portion of the 16S rRNA gene by PCR and 
then pyrosequenced the amplicons. The majority of micro-
bial species have not been taxonomically classified, and their 
16S rRNA genes are not known. Diversity must consequently 
be measured as the number of operational taxonomic units 
(OTUs) in the sample, defined as the clusters formed at a given 
level of sequence difference. Typically a complete linkage clus-
tering algorithm is used in which distances between clusters 
are defined as the maximum distance between their constituent 
sequences5. However, alternative methods of updating distances 
are possible, in particular average linkage, for which distances 
are defined as the average of all constituent sequences. Average 
linkage is referred to as the ‘unweighted pair group method 
with arithmetic mean’ in phylogenetic studies. It produces less 
homogenous clusters than maximum linkage and is therefore 
not the preferred choice for OTUs5.

These methods of OTU construction have been developed 
and tested for full-length dideoxy-sequenced clones for which 
clusters at 3% sequence difference approximate to species and 
5% to genera5. Pyrosequencing studies have observed much 
greater OTU diversity in soils and deep sea vents than previ-
ously anticipated6–8, and estimated diversities including unseen 
taxa are much larger9. However, assignment of OTUs based on 
sequence divergence has not been tested for pyrosequencing data. 
Pyrosequencing noise could inflate OTU number by introducing 

artificial sequence differences. In addition, the effect of PCR errors 
from the amplification step needs to be considered. Single-base 
PCR errors will increase the effective per-base sequencing error 
rate. PCR chimeras10, which are composed of two or more ‘true 
sequences’, need to be treated differently. We adapted the Mallard 
algorithm11 to screen for chimeras in the large datasets generated 
by pyrosequencing (Online Methods).

To quantify the number of OTUs in a sample due to noise, 
we generated an ‘artificial community’ of 16S microbial rRNA 
gene fragments from 90 clones. These clones were isolated from 
a eutrophic lake (Priest Pot) and dideoxy-sequenced (Online 
Methods). The number of OTUs observed will depend on the 
sequence difference used to define the clusters. As sequence dif-
ference is increased, clusters merge and OTU number decreases. 
Accurate OTU construction will only be possible for sequence dif-
ferences larger than the level of noise. We calculated the number 
of OTUs that should be observed for this sample by complete 
linkage clustering of the V5 region of the known clone sequences. 
We then amplified and pyrosequenced the V5 region of this mix-
ture (Supplementary Table 2 and Online Methods) and used 
different algorithms to calculate the number of complete link-
age OTUs that were actually observed (Fig. 1a). The standard 
OTU generation method aligning raw sequences to calculate 
distances (Online Methods) overestimated OTU number; the  
Ribosomal Database Project (RDP) pipeline that uses quality 
scores and performs a structural alignment12 does better but is 
only accurate at high sequence differences. However, using flow-
gram preclustering before OTU generation removed the major-
ity of the spurious OTUs, and almost all of the remaining ones 
were accounted for by chimera removal. We obtained these same 
results for an experiment in which we considered average linkage  
(Fig. 1b), except for the RDP pipeline, for which this was not an 
option. We also investigated the effect of noise removal on the 
accuracy of OTU assignment for complete (Fig. 2a) and average 
(Fig. 2b) linkage clustering. Removing noise allowed accurate 
OTU assignment even at low sequence differences.

These results demonstrate that our algorithm for pyrosequencing 
noise removal, followed by screening for PCR chimeras, gener-
ated sequence data that can be used for the accurate determina-
tion of microbial diversity. By comparing the results for complete 
(Figs. 1a and 2a) and average linkage (Figs. 1b and 2b) clustering 
it is apparent that the latter is more robust to noise. Consequently 
if our noise-removal methods, which improve the quality of OTU 
construction for both complete and average linkage, are not used, 
average linkage should be preferred. The methods used in previous 
studies likely overestimate microbial diversity dramatically; applied 
to the artificial community, they overestimated diversity at least six-
fold at the 3% OTU level (Fig. 1a). For a sample of pyrosequenced 

Figure 2 | Proportion of sequences assigned to the correct OTU as a 
function of percentage sequence difference for pyrosequenced 16S rRNA 
gene clones of known sequence. (a,b) Results are repeated for complete 
linkage (a) and average linkage algorithms (b).

Table 1  Numbers of complete linkage OTUs

Method Sample size Chimeric number 3% OTUs 5% OTUs

Flowgram 
preclustering and 
chimera removal

16,222 
 

479 
 

855 
 

699 
 

Standard method 16,222 – 1,327 877

RDP pipeline 16,222 – 1,208 862

Calculated from pyrosequenced environmental 16S rRNA V5 sequences from Priest Pot lake. –, chimera 
removal not applied.
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environmental 16S rRNA sequences from Priest Pot we found that 
3% OTU numbers were reduced by 40% after application of our 
noise-removal algorithms (Table 1). Diversity levels cited in previ-
ous reports should thus be treated with caution6–8.

The rationale for PyroNoise, the flowgram preclustering 
software,  was the problem of accurate construction of OTUs from 
16S rRNA sequence data, but it will also aid in the assignment of 
pyrosequenced reads to known taxa13. Applying our algorithm 
before classification has the advantage that fewer sequences will 
need to be classified, the relative abundance of different 16S rRNA 
genes in a sample will be correctly established, and the possibility 
of noise resulting in an erroneous classification will be reduced. 
Removing noisy reads will also make phylogenetic tree construc-
tion possible for larger datasets and result in more accurate phyl-
ogeny based diversity measures14. Our algorithm is not restricted 
to 16S rRNA sequence data: it can be applied whenever a homolo-
gous portion of a diverse gene is amplified and pyrosequenced, 
and could be used to determine eukaryotic microbial diversities 
or viral diversities in hosts or in population genetics2.

PyroNoise source code is available as Supplementary Software. 
Data and source code are also available at http://people.civil.gla.
ac.uk/~quince/PyroNoise.html.

METHODS
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Accession codes. NCBI Short Read Archive: study, SRP000570 
and samples, SRS002051–SRS002053.

Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS
Distance between a flowgram and a sequence. We will denote the 
probability that a signal of intensity f is observed when n nucle-
otides are incorporated as P(f | n) (Supplementary Fig. 1). These 
distributions were approximated for the GSFLX implementation 
by pyrosequencing known sequences. Flowgrams were aligned 
to their parent sequences using an exact Needleman-Wunsch 
algorithm (see below), and then all signal intensities from each 
homopolymer length used to generate the histograms. If less than 
10,000 signal intensities were observed for a given homopoly-
mer length then rather than using the histogram we substituted 
a Gaussian of mean n. This occurred for all homopolymer lengths 
with n > 5. The s.d., σn, for these Gaussians was extrapolated from 
a linear regression of the observed values as a function of n for  
n = 1,…,5, to give σn= 0.04 + 0.03n for n > 5.

We define the perfect flowgram U for a sequence S as the flowgram 
that would be generated in the absence of noise, and we denote this 
mapping S → Y. Therefore all intensities are equal to the homopoly-
mer lengths. This will be a vector of length M with elements Ul. The 
probability that S would generate a real flowgram f is

P P f n Ul l

l

M
( | ) ( | )f U = =

=
∏

1

assuming signal intensities are independent. In general these 
probabilities will be very small. Numerically it is easier to work 
with the negative logarithm of this quantity. We will refer to this 
as a ‘distance’ between a flowgram and a sequence, although it 
fails to meet the mathematical criteria of a true distance. The 
distance between a flowgram and a sequence is then the sum of 
the distances at each flow:

d P f n U P f n Ul l

l

M
l l

l

M
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Alignment of flowgrams to sequences. Equation 1 does not 
allow for the possibility of deletions or insertions during the 
pyrosequencing process. Given the underlying mechanics, this is 
probably reasonable but we want a distance measure that applies 
even when a flowgram has not been generated by exactly that 
sequence to account for single base errors introduced during PCR 
amplification. For this reason, we adapted the global Needleman-
Wunsch alignment algorithm to align flowgrams to sequences16. 
We used this dynamic programming method to exactly find the 
alignment that minimized the distance between the flowgram and 
the sequence. We defined the cost of matching a flow of intensity f 
to a homopolymer of length n as d(f, n) = –log(P(f | n)) and used 
a fixed gap cost G of 15.0, chosen to be just larger than d(1.0 | 0) 
so that introducing a gap was preferred to matching a signal to 
no signal. The only subtlety is that gaps must be introduced in 
groups of four to reflect the period of nucleotide flows across the 
plate. Internal gap costs are included in the distance measure. It 
is useful to normalize the distances in equation 1 by the align-
ment length M between a flowgram and a sequence so that a short 

(1)(1)

flowgram is not considered more likely to be generated from the 
same sequence than a longer one d′(f, S) = d(f, S) / M.

An algorithm to remove pyrosequencing noise by flowgram 
preclustering. Our method to remove pyrosequencing 
noise used model-based clustering. We assumed that the  
likelihood of the observed flowgrams is described by a mixture 
model4, and each component of the mixture corresponds to 
a different sequence. Assume that L sequences, Sj → Uj, each 
indexed by j are present with relative frequency τj. To define 
the likelihood we need the density of the observed flowgrams 
about each sequence. It is natural to use our distances to define 
this density. We assumed that the flowgrams are distributed as  
exponentials about the sequences with a characteristic cluster 
size σ, to give

F

d

i j

i j

( | )

exp
( , )

f S

f S

=
−







′
s

s

This form for the density function was chosen as it was a 
reasonable fit to the distribution of distances about sequences 
observed in our ‘divergent sequences’ dataset. The likelihood of 
the dataset D of N flowgrams indexed i is then:

L L FL L j
j

L

i j
i

N
( | ; , ..., ; , ..., ) ( | )D S S f St t t1 1

11

=










==

∑∏

Expectation-maximization algorithm. To find a solution to the 
set of sequences that generated the flowgrams we used an expec-
tation-maximization algorithm (EM). In EM for clustering the 
complete data are considered to include both the observed data 
and the mapping of data points to clusters, referred to as the 
unobserved data. In our case these are which sequences gener-
ated which flowgrams. This can be represented by a matrix Z with 
rows for each flowgram and columns for each sequence, so that  
zi,j =  δi,m(i), where m(i) gives the sequence that generated flowgram i.  
The complete data likelihood is then:

LC L FL L j i j
z

j

L

i

N
i j( , | ; , ..., ; ,..., ) ( ( | )) ,D Z S S f St t t1 1

11

=
==

∏∏

assuming that each row of Z, the vector zi, is independently and 
identically distributed according to a multinomial over L catego-
ries with probabilities τ1,…,τL. We then define the quantity z′i,j 
as the conditional expectation of zi,j given the model parameters, 
that is, the sequences and their abundances, under the complete 
data likelihood. These are the conditional probabilities that 
sequence j generated flowgram i. The EM iterates between an 
E step, where the z′i,j are computed given the model parameters 
and an M step, where the model parameters are calculated so as 
to maximize equation 3 with the zi,j replaced by their estimates 
z′i,j. This process will, under quite general conditions, converge to 
a local maximum of equation 2 (ref. 4). Our EM algorithm is: M 
step: given the z′i,j generate sequences j = 1,…, L using the aligned 
flowgrams, such that at each position l = 1, …, M:

U z d f nj
l

n i ji
N

i
l= ( )=∑min ( , ),′ ′

1

(2)(2)

(3)(3)
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If at the position l a flowgram alignment has a gap, then it is 
ignored in the calculation of the true homopolymer length at that 
point. Gaps in the sequence alignment are irrelevant. Define new 
relative frequencies as:

t j
i j

i
N z

N
= =∑

′ ,
1

This generates sequences and their frequencies which maximize 
the complete data likelihood, eqution 3, given D and Z.

Align flowgrams to sequences to obtain new distances d’(fi, Uj).
E step: calculate new z′i,j as:

z

d

di j

j
i j

k
i k

k
L
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t
s

f S

f S
1

Repeat until convergence.
Expectation-maximization algorithms because they only find 

local optimum are sensitive to initial conditions. These and the 
number of sequences L were determined using a preliminary 
hierarchical clustering between flowgrams. The distances between 
pairs of flowgrams for this hierarchical clustering were defined 
as the negative logarithm of the probability that both flowgrams 
were generated by the same sequence divided by the probability 
that each was generated independently. This is a Bayesian test of 
the hypothesis H that a pair of flowgrams i and j are from the 
same sequence:

P H
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The priors for the homopolymer lengths P(n), were defined as 
their normalized frequencies in the ‘divergent sequences’ data-
set provided they occurred over 10,000 times (Supplementary 
Table 1), otherwise (1/4)n was used. The distances obtained by 
taking the negative logarithm of this equation were normalized 
by the alignment length M and used as the input to a complete 
linkage clustering algorithm. The clusters formed at a given cut-
off distance c were used as the input to the EM.

Implementation. The EM algorithm was implemented as a mes-
sage parsing interface (MPI) program to run on Linux clusters. 
The maximum dataset size that can be processed in a reasonable 
amount of time (~1 d) on a cluster with 128 processors is 10,000 
flowgrams. To denoise larger datasets we divided them into the 
clusters formed at 35% sequence difference and then denoised the 
flowgrams in the individual clusters before recombining. There 
are two adjustable parameters in the flowgram preclustering: σ, 
the cluster size and c, the cut-off in the hierarchical clustering 
used to initialize the EM. Both the datasets were run with σ = 
1/15 and c = 0.05, values that gave good results. During each run 
the clusters with high initial weight typically draw in smaller clus-
ters that are close by and the number of sequences with nonzero 
weight τj decreases. The final number of sequences is therefore 

less than or equal to L and generated automatically. The algorithm 
was determined to have converged once the maximum change 
in z′i,j was smaller than 10−6 or a thousand iterations had been 
exceeded. After running the algorithm each flowgram i is assigned 
to the sequence j for which z′i,j was largest. Output consists of a 
set of denoised sequences with integer weights giving the number 
of flowgrams mapping to that sequence.

Chimera detection. The generation of 16S rRNA sequence 
libraries by pyrosequencing typically contains a PCR step where 
a portion of the 16S rRNA gene is amplified with the 454 A and 
B adaptors before sequencing. The possibility of PCR chimeras 
being generated during this step has hitherto been ignored even 
though the conditions, many different sequences often closely 
related, are highly conducive to chimera generation. Flowgram 
pre-clustering generates a set of denoised sequences which in 
general is much smaller than the original number of reads. It is 
therefore possible to search these sequences for PCR chimeras. 
To do this we adapted the Mallard algorithm11. Rather than per-
forming pair-wise comparisons of all sequences as in the original 
algorithm, we first considered all sequences with weights greater 
than ten, these were compared to each other and all judged chi-
meric by the Mallard algorithm with 100% outlier cut-off were 
removed. This generated a set of reference sequences that we could 
be confident in. The rest of the sequences were then compared 
to a random subset of 200 of these reference sequences in blocks 
of 200: if more than one chimeric interaction was observed with 
an outlier cut-off of 99.9% then this sequence was removed. This 
procedure reflects our greater confidence in sequences with higher 
weights and avoids having to do large multiple alignments and 
too many pairwise comparisons. In addition, our program dif-
fered from the original Mallard implementation in not consider-
ing pairwise comparisons with a sequence difference greater than 
25%, in our experience comparisons based on sequences more 
different than this were often falsely judged chimeric. These two 
changes resulted in a substantial reduction in the false positive 
rate over the default implementation. The multiple alignments 
for the Mallard algorithm were performed using the program 
MAFFT-G-INS-i17.

Generation of sequence data. Supplementary Table 2 provides 
a summary of the sequence data used in this study.

A 5-l sample of Priest Pot lake water was collected in winter, 
transported on ice and filtered through a 0.2-µm membrane  
filter to concentrate the microorganisms. Microbial biomass was 
washed from the 0.2-µm filter using 50 ml of the filtrate and the DNA 
was extracted using a FastDNA kit for soils according to the man-
ufacturer’s instructions (MP Biomedicals). This sample was then 
amplified using modified primers 787f and 1492r, with improved 
coverage across bacterial taxa7, with attached 454 adaptors A and 
B, respectively, at the 5′ end. We denote the combined oligonucleo
tide sequences A-787f and B-1492r (Supplementary Table 3).  
The PCR conditions were 95 °C for 5 min, 30 cycles of 95 °C for 
30 s; 57 °C for 30 s; 72 °C for 1 min; and finally 72 °C for 7 min. 
The polymerase used was standard Taq polymerase. Several PCR 
amplifications were carried out in order to obtain a total of 500 ng 
of DNA for pyrosequencing, the bulked products of which were 
cleaned-up using a QIAquick PCR purification kit according to 
the manufacturer’s instructions (Qiagen Ltd.). Pyrosequencing 
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of these amplicons was then performed from the A adaptor and 
a total of 28,361 reads obtained.

Priest Pot clones: in addition a library of 94 16S rRNA clone 
products was prepared using primers 787f and 1492r from the 
same environmental DNA sample. A TOPO TA cloning kit was 
used for sequencing with a pCR4-TOPO vector according to the 
manufacturer’s instructions (Invitrogen). The clone products were 
then amplified using T7 and T3 primers and Sanger sequenced 
using the 454 adaptor A as a primer. Two mixtures of these PCR 
products were then prepared. (i) Divergent sequences: a sample  
comprising 23 clone products mixed in equal proportions. 
These clones differed by at least 7% to allow unambiguous 
classification of pyrosequencing reads. (ii) Artificial community: 
a sample comprising 90 products from the clone library mixed 
in proportions that varied by two orders of magnitude and were 
determined to approximate 3% OTU abundances in the Priest Pot 
pyrosequencing data. This sample provides an approximation to 
a real community with variable abundances and sequences that 
can be very similar.

These two mixtures were then pyrosequenced following ampli-
fication with A-787f adaptor primer and the B-1492r primer as 
above. Read numbers were 57,902 and 46,249 for the two datasets 
respectively.

OTU construction: initial noise removal. Noise in pyrose-
quencing data can be greatly reduced by removal of short reads 
and reads containing noisy bases, defined as a signal intensity 
between 0.5 and 0.7 (ref. 18). We therefore curtailed flowgrams 
when a noisy read was observed and removed all flowgrams 
where this gave a sequence of less than 200 bases. In addition 
we removed all reads which did not possess a perfect copy of the 
primer sequence.

OTU generation: standard methods. The ‘standard method’ of 
OTU generation for pyrosequencing data begins with a multiple 
alignment of the unique sequences in the dataset6–8. We used 
MUSCLE with arguments, - maxiters 2 - diags, to do this19. These 
parameters, which restrict the number of iterations, were necessary 
because of the large size of the datasets. The multiple alignment  
was used to define distances between reads as the percentage base-
pair difference using the quickdist algorithm6. Terminal gaps were 
ignored and internal gaps counted as one base pair difference 
regardless of length. This distance measure was used throughout 

this study. These distances were used to perform a hierarchical 
clustering of sequences and OTUs were defined at a given level of 
sequence dissimilarity. This is identical to the OTU construction 
procedure used in the package DOTUR5. We used two hierarchi-
cal clustering algorithms, complete linkage, in which distances 
between clusters are defined as the maximum distance between 
all their members, and average linkage (unweighted pair group 
method with arithmetic mean (UPGMA)) for which distances are 
the average between members5. In the latter case the frequencies 
of the unique sequences were taken into account, in the former 
they are irrelevant. Complete linkage is typically used in diversity 
estimation from 16S rRNA sequence data. In addition we proc-
essed our data (both sequences and qualities) using the pyro-
sequencing pipeline on the RDP 10 web server, in which noise 
removal and alignment of sequences is followed by a complete 
linkage clustering to determine OTUs12.

OTU generation after noise removal. After flowgram precluster-
ing, and PCR chimera removal, multiple alignments of the denoised 
sequenced were generated by either MAFFT-G-INS-i17 for the arti-
ficial community and MUSCLE19 for Priest Pot samples. Distance 
matrices were then calculated, and OTUs formed by hierarchical 
clustering using either the complete or average linkage algorithms.

OTU assignment accuracy. To test the accuracy of the assign-
ment of reads to OTUs we performed a BLAST20 search of each 
sequence in the artificial community dataset against the 90 clones 
and classified sequences according to their closest clone sequence. 
From the clustering of the known V5/V6 clone sequences we 
determined what the true assignment to OTUs at any given cut-
off should be. We then labeled the reads with these assignments. 
A good OTU generation algorithm should reconstruct this labe-
ling. Starting with the largest OTU, we associated it with the most 
frequent true OTU label that was unassigned among its reads. The 
accuracy of OTU construction was defined as the number of reads 
whose labels matched that of their OTU.

16.	 Needleman, S.B. & Wunsch, C.D. J. Mol. Biol. 48, 443–453 (1970).
17.	 Katoh, K., Kuma, K., Toh, H. & Miyata, T. Nucleic Acids Res. 33,  

511–518 (2005).
18.	 Huse, S.M., Huber, J.A., Morrison, H.G., Sogin, M.L. & Mark Welch, D. 

Genome Biol. 8, 9 (2007).
19.	 Edgar, R.C. Nucleic Acids Res. 32, 1792–1797 (2004).
20.	 Altschul, S.F. et al. Nucleic Acids Res. 25, 3389–3402 (1997).
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