
CMSC423 Fall 2008 1

CMSC423: Bioinformatic Algorithms,
Databases and Tools

Lecture 10

inexact alignment
dynamic programming, gapped

alignment

CMSC423 Fall 2008 2

Intuition
• What is the best way to align strings S1 and S2?
• just look at last character for now – what is it aligned

to?
S1[n]

S2[m]

S1[n]

S2[m]

S1[n]

S2[m]

AG-C-GTAG
-GTCAG-A-

CMSC423 Fall 2008 3

The recurrences

AG-C-GTAG
-GTCAG-A-

Score[i,j] is the maximum of:

1. Score[i-1, j-1] + Value[S1[i],S2[j]]
 AG-C-G AG-C-G
 -GTCAG -GTCAT
2. Score[i – 1, j] + Value[S1[i], -] (S1[i] aligned to gap)
 AG-C-GT
 -GTCAG-
3. Score[i, j – 1] + Value[-, S2[j]] (S2[j] aligned to gap)
 AG-C-
 -GTCA

CMSC423 Fall 2008 4

The dynamic programming table
Score[i,j] is the maximum of:

1. Score[i-1, j-1] + Value(S1[i],S2[j]) (S1[i-1], S2[j-1] aligned)
2. Score[i – 1, j] + Value(S1[i], -) (S1[i] aligned to gap)
3. Score[i, j – 1] + Value(-, S2[j]) (S2[j] aligned to gap)

-14-12-10-8-6-4-20-

-14
-10
-8
-6
-4
-2

-

A
G
A
C
T
G

-8
-6
-4

A

4
6
8

G

16
4
6

GATGC Value (A, A) = 10
Value (A, G) = -5
Value (A, -) = -2

Note: we only look
at 3 adjacent boxes

CMSC423 Fall 2008 5

How do you output the result?
• Goal: produce the “nice” string with gaps that is shown

in the examples
• Idea: create the string backwards – starting from the

right
• As you follow backtrack pointers:

– if you follow diagonal pointer – add characters to both output
strings (aligned versions of original strings)

– if you move up – add gap character to string represented on
the y axis, add string character to string represented on x
axis

– if you move left – gap goes in string on x axis and character
in string on y axis

• When you reach (0,0) output the two aligned strings

CMSC423 Fall 2008 6

Local vs. global alignment
• Can we change the algorithm to allow S1 to be a

substring of S2?
 ACAGTTGACCCGTGCAT
 ----TG-CC-G------
• Key idea: gaps at the end of S2 are free
• Simply change the first row in the DP table to 0s
• Answer is no longer Score[n, m], rather the largest

value in the last row

CMSC423 Fall 2008 7

Sub-string alignment

00000000-

-6
-4
-2

-

T
G
C

A G

262830186
18208

810

GATGC

AGCGTAG
 CGT

CMSC423 Fall 2008 8

Local alignment
• What if we just want a region of similarity?
 ACAGTTGACCCGTGCAT
 || || |
 GTCATG-CC-GAGATCG
• First row and column set to 0s
• Allow alignment to start anywhere:
Score[i,j] = max{0, case 1, case 2, case 3}
• Answer is location in matrix with highest score

CMSC423 Fall 2008 9

Local alignment

00000000

0
0
0
0
0
0

C
T
G
C
T
C

30
20

A

0

G

10

GATGC

AGCGTAG
 |||
CTCGTC

CMSC423 Fall 2008 10

Various flavors of alignment
• Alignment problem also called "edit distance" – how

many changes do you have to make to a string to
convert it into another one.

• Edit distance also called Levenshtein distance
• Local alignment – Smith-Waterman
• Global alignment – Needleman-Wunsch

11

Gap penalties

CMSC423 Fall 2008 12

How much do we pay for gaps?
• In the edit-distance/alignment framework
Cost(n gaps in a row) = n * Cost(gap)

• This doesn't work for e.g. RNA-DNA alignments
ACAGTTCGACTAGAGGACCTAGACCACTCTGT
 TTCGA----------TAGACCAC
• Affine gap penalties
Cost(n gaps in a row) = Cost(gap open) + n * Cost(gap)
• Gap opening penalty is high, gap extension penalty is

low (once we start a gap we might as well pile more
gaps on top)

CMSC423 Fall 2008 13

Dynamic programming solution
• Traditional 1-table approach doesn't work anymore
• Instead, use 4 tables:

– V – stores value of best alignment between S1[1..i], S2[1..j]
– G – best alignment between S1[1..i], S2[1..j] s.t. S1[i] aligned

with S2[j]
– E – best alignment between S1[1..i], S2[1..j], s.t. alignment

ends with gap in S1
– F – best alignment between S1[1..i], S2[1..j], s.t. alignment

ends with gap in S2
• V[i,j] = max(E[i,j], F[i,j], G[i,j])
• As in traditional approach, find box in V matrix where

V[i,j] is maximal.

CMSC423 Fall 2008 14

Affine gap recurrences
• V[i,j] = max[E[i,j], F[i,j], G[i,j]]
• G[i,j] = V[i-1, j-1] + Value(S1[i], S2[j])

– irrespective how we got here (hence use of V), S1[i] and
S2[j] are matched

• E[i,j] = max{E[i, j-1], V[i, j-1] – GapOpen} – GapExtend
– either we add a gap in S1 to an existing one (E-GapExtend)
– or we add a gap in S1 when there was none (V-GapOpen-

GapExtend)
• F[i,j] = max{F[i-1, j], V[i-1, j] – GapOpen} – GapExtend

– either we add a gap in S2 to an existing one (F–GapExtend)
– or we add a gap in S2 when there was none (V-GapOpen-

GapExtend)

CMSC423 Fall 2008 15

Running times
• All these algorithms run in O(mn) – quadratic time
• Note – this is significantly worse than exact matching
• Next we'll talk about speed-up opportunities

• BTW, how much space is needed?

• If we only need to find the best score (not the exact
alignment as well) – O(min(m,n))

• If we need to find the best alignment – elegant divide
and conquer algorithm leads to linear space solution.

