
CMSC423 Fall 2008 1

CMSC423: Bioinformatic Algorithms,
Databases and Tools

Lecture 9

inexact alignment
dynamic programming, gapped

alignment

CMSC423 Fall 2008 2

Recap

3

Global alignment recap

C

-
-

A
G
A
C
T
G

A G GATGC

AGCGTAG
GTCAGAC

Value(A,A) = 10
Value(A,G) = -5
Value(A,-) = -2

Score[i,j] is the maximum of:

1. Score[i-1, j-1] + Value[S1[i-1],S2[j-1]] (S1[i-1], S2[j-1] aligned)
2. Score[i – 1, j] + Value[S1[i], -] (S1[i] aligned to gap)
3. Score[i, j – 1] + Value[-, S2[j]] (S2[j] aligned to gap)

4

Global alignment recap

1920910140-14-28C

-28-24-20-16-12-8-40-

-24
-20
-16
-12
-8
-4

-

2024131434-10A
G
A
C
T
G

2410141848-6
1014378-6-2

-13
-9
-5

A

-2
2
6

G

-134812
048-31
-14-10-6-22

GATGC

AG-C-GTAG
-GTCAG-AC

Value(A,A) = 10
Value(A,G) = -5
Value(A,-) = -4

Score[i,j] is the maximum of:

1. Score[i-1, j-1] + Value[S1[i-1],S2[j-1]] (S1[i-1], S2[j-1] aligned)
2. Score[i – 1, j] + Value[S1[i], -] (S1[i] aligned to gap)
3. Score[i, j – 1] + Value[-, S2[j]] (S2[j] aligned to gap)

5

Local alignment recap

C

-
-

A
G
A
C
T
G

A G GATGC

AGCGTAG
GTCAGAC

Value(A,A) = 10
Value(A,G) = -5
Value(A,-) = -2

Score[i,j] is the maximum of:
0. 0
1. Score[i-1, j-1] + Value[S1[i-1],S2[j-1]] (S1[i-1], S2[j-1] aligned)
2. Score[i – 1, j] + Value[S1[i], -] (S1[i] aligned to gap)
3. Score[i, j – 1] + Value[-, S2[j]] (S2[j] aligned to gap)

CMSC423 Fall 2008 6

Alignment scores

CMSC423 Fall 2008 7

Where do the alignment scores come from?
• PAM matrices

– PAM1 – based on frequency of mutations between closely
related proteins (within 1 "evolutionary step")

– PAM 2 - ... within 2 evolutionary steps
– ... PAM 250 – commonly used

• BLOSUM matrices
– Frequency of mutations between proteins that are x% similar
– BLOSUM100 – based on proteins that are exactly the same

(e.g. score(A,A) is defined but not score(A,G))
– BLOSUM62 – commonly used

• gap scores usually determined empirically

CMSC423 Fall 2008 8

BLOSUM62

CMSC423 Fall 2008 9

Heuristics

CMSC423 Fall 2008 10

Heuristics
• What if limit the # of differences allowed? E.g. we

expect the sequences to be very similar.
• Compute 'banded' alignment – stay within # of

differences (k) from the diagonal.
• Optimal alignment cannot stray too far from diagonal

• What if we do not know k? Do binary search to find it

k
k

O(km) running
time and space

CMSC423 Fall 2008 11

Exclusion methods
• Assume P must match T with at most k errors. Find

places in T where P cannot match.
• Split P into floor(n/k+1)-sized chunks.
• If P matches T with less than k errors => at least one

chunk matches with no errors
• Use any exact matching algorithm to find places

where a chunk matches T, then run dynamic
programming in that vicinity.

• Running time, on average O(m)

CMSC423 Fall 2008 12

Exclusion methods

Exact match

Putative alignment
Text

Pattern

CMSC423 Fall 2008 13

"Famous" approaches
• FASTA (Pearson et al.)

– Take all k-mers (substrings of length k) from Pattern and
identify whether and where they match in the Text

– Assume the k-mer starting at pos'n i in Pattern matches at
position j in Text, remember (j – i) – the diagonal on which
the match occured

– Identify "heavy" diagonals – diagonals where many k-mers
match, then refine the diagonals with Smith Waterman

– Also look for off-diagonal matches to account for gaps

CMSC423 Fall 2008 14

"Famous" approaches
• BLAST (Altschul et al.)

– Find short k-mer matches
– Also search for possible inexact matches, e.g. all k-mers

within 1 difference from current one.
– Extend exact matches with Smith-Waterman algorithm
– Assign probabilistic scores to matches: what is the

probability of finding a match with the same S-W alignment
score just by chance (e.g. matching a random string)?

CMSC423 Fall 2008 15

Chaining approach
• Extends the FASTA idea
• Search for exact matches
• Find the longest consistent chain of exact matches
• Fill in the gaps in the chain using Smith-Waterman

• This is the approach used by MUMmer (Delcher et al.)
• MUM – maximally unique match (see

mummer.sourceforge.net)

CMSC423 Fall 2008 16

Chaining in 1-D
• Input: multiple overlapping intervals on a line
• Output: highest weight set of non-overlapping intervals
• Weight could be length of interval, or Smith-Waterman score,

etc.

• Sort the endpoints (starts, ends) of the intervals
• For every interval j, store V[j] – best score of a chain ending in j
• MAX – store highest V[j] seen sofar
• Process endpoints in increasing order of x coordinate
• If we encounter left end (start) of interval j

– V[j] = weight(j) + MAX
• If we encounter right end (end) of interval j

– MAX = max{V[j], MAX}
• Running time?

