CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 9

inexact alignment dynamic programming, gapped alignment

Recap

Global alignment recap

Score $[i, j]$ is the maximum of:

1. Score[i-1, j-1] + Value[S1[i-1],S2[j-1]] (S1[i-1], S2[j-1] aligned)
2. Score[i-1, j] + Value[S1[i], -] (S1[i] aligned to gap)
3. Score[i, j - 1] + Value[-, S2[j]] (S2[j] aligned to gap)

	-	A	G	C	G	T	A	G
-								
G								
T								
C								
A								
G								
A								
C								

AGCGTAG GTCAGAC

Value $(A, A)=10$
$\operatorname{Value}(A, G)=-5$
Value(A,-) $=-2$

Global alignment recap

Score[i,j] is the maximum of:

1. Score[i-1, j-1] + Value[S1[i-1],S2[j-1]] (S1[i-1], S2[j-1] aligned)
2. Score[i-1, j] + Value[S1[i], -] (S1[i] aligned to gap)
3. Score[i, j - 1] + Value[-, S2[j]] (S2[j] aligned to gap)

	-	A	G	C	G	T	A	G
-	0	-4	-8	-12	-16	-20	-24	-28
G	-4	-5	6	2	-2	-6	-10	-14
T	-8	-9	2	1	-3	8	4	0
C	-12	-13	-2	12	8	4	3	-1
A	-16	-2	-6	8	7	3	14	10
G	-20	-6	8	4	18	14	10	24
A	-24	-10	4	3	14	13	24	20
C	-28	-14	0	14	10	9	20	19

Value $(A, A)=10$
$\operatorname{Value}(A, G)=-5$
Value $(\mathrm{A},-)=-4$

Local alignment recap

Score $[i, j]$ is the maximum of:
0.0

1. Score[i-1, j-1] + Value[S1[i-1],S2[j-1]] (S1[i-1], S2[j-1] aligned)
2. Score[i-1, j] + Value[S1[i], -] (S1[i] aligned to gap)
3. Score[i, j - 1] + Value[-, S2[j]] (S2[j] aligned to gap)

	-	A	G	C	G	T	A	G
-								
G								
T								
C								
A								
G								
A								
C								

AGCGTAG GTCAGAC

Value $(A, A)=10$
Value $(A, G)=-5$
Value $(A,-)=-2$

Alignment scores

Where do the alignment scores come from?

- PAM matrices
- PAM1 - based on frequency of mutations between closely related proteins (within 1 "evolutionary step")
- PAM 2 - ... within 2 evolutionary steps
- ... PAM 250 - commonly used
- BLOSUM matrices
- Frequency of mutations between proteins that are $\mathrm{x} \%$ similar
- BLOSUM100 - based on proteins that are exactly the same (e.g. score (A, A) is defined but not score (A, G))
- BLOSUM62 - commonly used
- gap scores usually determined empirically

BLOSUM62

Heuristics

Heuristics

- What if limit the \# of differences allowed? E.g. we expect the sequences to be very similar.
- Compute 'banded' alignment - stay within \# of differences (k) from the diagonal.
- Optimal alignment cannot stray too far from diagonal

$\mathrm{O}(\mathrm{km})$ running time and space
- What if we do not know k? Do binary search to find it

Exclusion methods

- Assume P must match T with at most k errors. Find places in T where P cannot match.
- Split P into floor(n/k+1)-sized chunks.
- If P matches T with less than k errors => at least one chunk matches with no errors
- Use any exact matching algorithm to find places where a chunk matches T, then run dynamic programming in that vicinity.
- Running time, on average $\mathrm{O}(\mathrm{m})$

Exclusion methods

"Famous" approaches

- FASTA (Pearson et al.)
- Take all k-mers (substrings of length k) from Pattern and identify whether and where they match in the Text
- Assume the k-mer starting at pos'n i in Pattern matches at position j in Text, remember ($\mathrm{j}-\mathrm{i}$) - the diagonal on which the match occured
- Identify "heavy" diagonals - diagonals where many k-mers match, then refine the diagonals with Smith Waterman
- Also look for off-diagonal matches to account for gaps

"Famous" approaches

- BLAST (Altschul et al.)
- Find short k-mer matches
- Also search for possible inexact matches, e.g. all k-mers within 1 difference from current one.
- Extend exact matches with Smith-Waterman algorithm
- Assign probabilistic scores to matches: what is the probability of finding a match with the same S-W alignment score just by chance (e.g. matching a random string)?

Chaining approach

- Extends the FASTA idea
- Search for exact matches
- Find the longest consistent chain of exact matches
- Fill in the gaps in the chain using Smith-Waterman
- This is the approach used by MUMmer (Delcher et al.)
- MUM - maximally unique match (see mummer.sourceforge.net)

Chaining in 1-D

- Input: multiple overlapping intervals on a line
- Output: highest weight set of non-overlapping intervals
- Weight could be length of interval, or Smith-Waterman score, etc.
- Sort the endpoints (starts, ends) of the intervals
- For every interval j , store $\mathrm{V}[\mathrm{j}]$ - best score of a chain ending in j
- MAX - store highest V[j] seen sofar
- Process endpoints in increasing order of x coordinate
- If we encounter left end (start) of interval j
$-\mathrm{V}[\mathrm{j}]=$ weight $(\mathrm{j})+\mathrm{MAX}$
- If we encounter right end (end) of interval j
$-\mathrm{MAX}=\max \{V[\mathrm{j}], \mathrm{MAX}\}$
Running time?

