CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 12
chaining algorithms multiple alignment

## Jobs

- Applied Predictive Technologies - looking for the best students - focus on databases (forwarded by Daniel Hackner) -not bioinformatics


## Chaining in 1-D

- Input: multiple overlapping intervals on a line
- Output: highest weight set of non-overlapping intervals
- Weight could be length of interval, or Smith-Waterman score, etc.

- Rationale? The pattern can have multiple inconsistent exact matches to the text - we want to pick a longest consistent set



# Path "planning" and dynamic programming 

- One intuitive way to think about dynamic programming
- similar to finding shortest path between two points
- at each "point" ask - what are all possible ways to get here?
- pick the best (shortest, fastest, etc.)



## Chaining in 1D

- Sort the endpoints (starts, ends) of the intervals
- For every interval j , store $\mathrm{V}[\mathrm{j}]$ - best score of a chain ending in j
- MAX - store highest V[j] seen sofar
- Process endpoints in increasing order of x coordinate
- If we encounter left end (start) of interval $j$
$-V[j]=$ weight $(j)+M A X$
- If we encounter right end (end) of interval j
$-\operatorname{MAX}=\max \{V[j], M A X\}$
Running time?


## Chaining in 2-D

- Easy to do in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ ( n - \# of intervals)
- View alignments as "boxes"
- All boxes in a chain must follow each other in a "diagonal" order, i.e. the range of the $x$ coordinates and $y$ coordinates of any two boxes in a chain cannot overlap
- Similar to 1-D approach except at each step we must check if current box can extend any of the previously built chains
- $\mathrm{V}[\mathrm{j}]=\max _{\text {all previous boxes } k}\{\mathrm{~V}[\mathrm{k}]+$ weight $(\mathrm{j})\}$
- More complex algorithm leads to $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ running time



## Multiple sequence alignment

## Multiple sequence alignment

- Simultaneously identify relationship between multiple sequences

HBB HUMAN<br>HBB HORSE<br>HBA HUMAN<br>HBA HORSE<br>MYG PHYCA<br>GLB5 PETMA<br>LGB2_LUPLU

FFESFGDLSTPDAVMGNPKVKAHGKKVL-----GAFSDGLAHLDNLKGTF FFDSFGDLSNPGAVMGNPKVKAHGKKVL-----HSFGEGVHHLDNLKGTF YFPHF-DLS-----HGSAQVKGHGKKVA-----DALTNAVAHVDDMPNAL YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVGHLDDLPGAL KFDRFKHLKTEAEMKASEDLKKHGVTVL-----TALGAILKKKGHHEAEL FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL

- Note: multiple alignment implies (not necessarily optimal) pairwise alignment between the individual sequences

YFPHF-DLS-----HGSAQVKGHGKKVA-----DALTNAVAHVDDMPNAL YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVGHLDDLPGAL

## Multiple alignment - formal definition

- M - multiple sequence alignment for $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{k}}$
- $D\left(s_{i}, s_{j}\right)$ - optimal score of alignment between $s_{i}, s_{j}$
- $d\left(s_{i}, s_{j}\right)$ - score of alignment btwn $\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}$ induced by M
- score of $\mathrm{Md}(\mathrm{M})=\operatorname{sum}_{\text {all pairs } \mathrm{si}, \mathrm{sj}} \mathrm{d}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right)$
- also called sum-of-pairs
- Optimal multiple alignment minimizes $\mathrm{d}(\mathrm{M})$
- Computing optimal $\mathrm{d}(\mathrm{M})$ is NP hard
- Note: in multiple alignment we think of "distance" rather than "similarity"


## But....here's a solution

- Dynamic programming solution. e.g. 3 sequences
- Score(i, j, k) - optimal alignment between s1[1..i], s2[1..j], s3[1..k] - do DP as usual
- $s(i, j, k)=\max \{$ $\mathrm{s}(\mathrm{i}-1, \mathrm{j}-1, \mathrm{k}-1)+$ match(s1[i], s2[j], s3[k]),



## But... it's expensive

- 3 sequences - need to fill in the cube $O\left(n^{3}\right)$
- $k$ sequences - k-dimensional cube $O\left(n^{k}\right)$ time/space
- There are tricks that can help - similar to AI techniques for reducing the search space
- Basic idea - if we can estimate optimal score, we can prune the search space.
- Note - these are just heuristics - not guaranteed to work faster


## Alternative - approximation algorithm

- Can we efficiently compute a multiple alignment with a score that's not too bad?
- The Star method:
- build all $k^{2}$ pairwise alignments ( $O\left(k^{2} n^{2}\right)$ )
- pick sequence sc that is closest to all other sequences: sum ${ }_{\mathrm{si}} \mathrm{D}\left(\mathrm{sc}, \mathrm{s}_{\mathrm{i}}\right)$ is minimal over all choices of sc
- iteratively align each sequence to sc
- Theorem: sum-of-pairs score of star alignment is at most twice as big as optimal multiple alignment score


## Iterative alignment

SC YFPHFDLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL

- Take sequences si in order:
- align s1 with sc - results in gaps being inserted in both sequences

SC YFPHFDLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL
S1 YFPHFDLSHG-AQVKG--KKVADALTNAVAHVDDMPNAL

- align s2 with sc - if gaps must be inserted - insert in previously aligned sequences

SC YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVAHLDDLPGAL
S1 YFPHF-DLS-----HG-AQVKG-GKKVA-----DALTNAVAHVDDMPNAL
S2 FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS

- and so on (note: if gaps coincide with previously introduced gaps no need to change previously aligned sequences)

SC YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVAHLDDLPGAL
S1 YFPHF-DLS-----HG-AQVKG-GKKVA-----DALTNAVAHVDDMPNAL
S2 FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS
S3 LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL

## Theorem proof

- Theorem: star alignment is 2-optimal
- Assumption: distances obey triangle inequality

OPT $=\sum_{\mathrm{s} i, \mathrm{sj}} \mathrm{d}^{*}\left(\mathrm{~s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right) \geq \sum_{\mathrm{s} i, \mathrm{sj}} \mathrm{D}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right) \geq \mathrm{k} \sum_{\mathrm{si}} \mathrm{D}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{sc}\right)$
STAR $=\sum_{\mathrm{s} i, \mathrm{sj}} \mathrm{d}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right) \leq \sum_{\mathrm{s}, \mathrm{ij}}\left(\mathrm{D}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{sc}\right)+\mathrm{D}\left(\mathrm{s}_{\mathrm{j}}, \mathrm{sc}\right)\right)$ \# triangle ineq.
$=\sum_{\mathrm{s}, \mathrm{sj}} \mathrm{D}\left(\mathrm{s}_{\mathrm{j}}, \mathrm{sc}\right)+\sum_{\mathrm{s}, \mathrm{sj}} \mathrm{D}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{sc}\right)$
$=2 \mathrm{k} \sum_{\mathrm{si}} \mathrm{D}(\mathrm{s}, \mathrm{sc})$
=> STAR/OPT $\leq 2$
Q.E.D
note: $\sum_{\mathrm{si}} \mathrm{D}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{sc}\right)$ - is score optimized by choice of sc
$\mathrm{d}^{\star}(\mathrm{si}, \mathrm{sj})$ - score of alignment btwn si, sj within optimal alignment
$\mathrm{d}(\mathrm{si}, \mathrm{sj})$ - score of alignment btwn si, sj within star alignment
$\mathrm{D}(\mathrm{si}, \mathrm{sj})$ - score of optimal alignment btwn si, sj


