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CMSC423: Bioinformatic Algorithms, 
Databases and Tools

Lecture 12

chaining algorithms
multiple alignment
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Jobs
• Applied Predictive Technologies – looking for the best 

students – focus on databases (forwarded by Daniel 
Hackner) -not bioinformatics
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Chaining in 1-D 
• Input: multiple overlapping intervals on a line
• Output: highest weight set of non-overlapping intervals
• Weight could be length of interval, or Smith-Waterman score, 

etc.

• Rationale?  The pattern can have multiple inconsistent exact 
matches to the text – we want to pick a longest consistent set
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Path “planning” and dynamic programming
• One intuitive way to think about dynamic programming

– similar to finding shortest path between two points
– at each “point” ask – what are all possible ways to get here?
– pick the best (shortest, fastest, etc.)
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Chaining in 1D
• Sort the endpoints (starts, ends) of the intervals
• For every interval j, store V[j] – best score of a chain ending in j
• MAX – store highest V[j] seen sofar
• Process endpoints in increasing order of x coordinate
• If we encounter left end (start) of interval j

– V[j] = weight(j) + MAX
• If we encounter right end (end) of interval j

– MAX = max{V[j], MAX}

•                          Running time?  
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Chaining in 2-D
• Easy to do in O(n2) (n - # of intervals)
• View alignments as "boxes"
• All boxes in a chain must follow each other in a "diagonal" 

order, i.e. the range of the x coordinates and y coordinates of 
any two boxes in a chain cannot overlap

• Similar to 1-D approach except at each step we must check if 
current box can extend any of the previously built chains

• V[j] = maxall previous boxes k {V[k] + weight(j)}
• More complex algorithm leads to O(n log n) running time



CMSC423 Fall 2008 7

Multiple sequence alignment
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Multiple sequence alignment
• Simultaneously identify relationship between multiple 

sequences

• Note: multiple alignment implies (not necessarily 
optimal) pairwise alignment between the individual 
sequences

HBB_HUMAN      FFESFGDLSTPDAVMGNPKVKAHGKKVL-----GAFSDGLAHLDNLKGTF 
HBB_HORSE      FFDSFGDLSNPGAVMGNPKVKAHGKKVL-----HSFGEGVHHLDNLKGTF 
HBA_HUMAN      YFPHF-DLS-----HGSAQVKGHGKKVA-----DALTNAVAHVDDMPNAL 
HBA_HORSE      YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVGHLDDLPGAL 
MYG_PHYCA      KFDRFKHLKTEAEMKASEDLKKHGVTVL-----TALGAILKKKGHHEAEL 
GLB5_PETMA     FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS 
LGB2_LUPLU     LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL
                *  :   .       . .:: *.  :       :.   : 

HBA_HUMAN      YFPHF-DLS-----HGSAQVKGHGKKVA-----DALTNAVAHVDDMPNAL 
HBA_HORSE      YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVGHLDDLPGAL 
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Multiple alignment – formal definition
• M – multiple sequence alignment for s1,...,sk

• D(si,sj) – optimal score of alignment between si, sj

• d(si,sj) – score of alignment btwn si, sj induced by M
• score of M d(M) = sumall pairs si, sj d(si, sj)
• also called sum-of-pairs

• Optimal multiple alignment minimizes d(M) 

• Computing optimal d(M) is NP hard
• Note: in multiple alignment we think of "distance" 

rather than "similarity"
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But....here's a solution
• Dynamic programming solution.   e.g. 3 sequences

• Score(i, j, k) – optimal alignment between s1[1..i], 
s2[1..j], s3[1..k] – do DP as usual

• s(i,j,k) = max {
          s(i-1, j-1, k-1) +
 match(s1[i], s2[j], s3[k]),
 ...

s1s2

s3
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But... it's expensive
• 3 sequences – need to fill in the cube O(n3)
• k sequences – k-dimensional cube O(nk) time/space

• There are tricks that can help – similar to AI 
techniques for reducing the search space

• Basic idea – if we can estimate optimal score, we can 
prune the search space.

• Note – these are just heuristics – not guaranteed to 
work faster
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Alternative – approximation algorithm
• Can we efficiently compute a multiple alignment  with 

a score that's not too bad?
• The Star method:

– build all k2 pairwise alignments (O(k2n2))
– pick sequence sc that is closest to all other sequences: 

sum si D(sc, si) is minimal over all choices of sc
– iteratively align each sequence to sc

• Theorem: sum-of-pairs score of star alignment is at 
most twice as big as optimal multiple alignment score
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Iterative alignment

• Take sequences si in order:
– align s1 with sc - results in gaps being inserted in both 

sequences

– align s2 with sc - if gaps must be inserted – insert in 
previously aligned sequences 

– and so on (note: if gaps coincide with previously introduced 
gaps no need to change previously aligned sequences)

SC YFPHFDLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL

SC YFPHFDLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL
S1 YFPHFDLSHG-AQVKG--KKVADALTNAVAHVDDMPNAL

SC YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVAHLDDLPGAL
S1 YFPHF-DLS-----HG-AQVKG—GKKVA-----DALTNAVAHVDDMPNAL
S2 FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS

SC YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVAHLDDLPGAL
S1 YFPHF-DLS-----HG-AQVKG—GKKVA-----DALTNAVAHVDDMPNAL
S2 FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS
S3 LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL
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Theorem proof
• Theorem: star alignment is 2-optimal
• Assumption: distances obey triangle inequality
OPT = ∑si,sj d*(si,sj) ≥ ∑si,sj D(si,sj)≥ k ∑si D(si, sc)
STAR = ∑si,sj d(si,sj) ≤ ∑si,sj

(D(si, sc) + D(s
j
, sc))  # triangle ineq. 

      = ∑sj,sjD(sj, sc) + ∑sj,sjD(si, sc)
          = 2k ∑siD(si, sc)
=> STAR/OPT ≤ 2           Q.E.D
note: ∑siD(si, sc) – is score optimized by choice of sc
d*(si,sj) – score of alignment btwn si, sj within 

optimal alignment
d(si,sj) – score of alignment btwn si, sj within

star alignment
D(si,sj) – score of optimal alignment btwn

si, sj

sc
si

sj


