CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 13
multiple alignment motif finding

Recap

- Multiple alignment is expensive $-\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ for k sequences of length n (use same DP as for pairwise but on a k -dimensional matrix)
- Approximation algorithm (star alignment) can find a solution in $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{k}^{2}\right)$ which is at most twice worse than the best alignment

Consensus sequence

- For every column j in the alignment, pick the amino-acid AA that minimizes $\sum_{i} \mathrm{~d}\left(\mathrm{AA}, \mathrm{S}_{\mathrm{i}}[\mathrm{j}]\right)$ (usually becomes majority rule)
- Intuitively - this is the sequence of the ancestor of all the sequences in the multiple alignment
- We can define the multiple alignment problem as:
- find the multiple alignment that minimizes $\sum_{i} D\left(C O, S_{i}\right)$
- Still NP - hard, but consensus sequence useful on it's own.

[^0]
Iterative alignment revisited

- Pick a sequence (e.g. SC) as a starting point
- Align S1 to it \& build consensus for the alignment
- Take S2 and align it to the consensus (instead of SC)
- repeat...
- Problem: consensus (or any single sequence) ignores the other sequences being aligned.
- Solution: keep track of \% of each amino-acid aligned in each column
- score of alignment to profile - combination of scores to each AA.

Profile alignment

- Solution: keep track of \% of each amino-acid aligned in each column
- score of alignment to profile - combination of scores to each AA.

- Score(prof1, prof2) = weighted average of all pairs of aminoacids

Practical algorithms

Iterative alignment

SC YFPHFDLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL

- Take sequences si in order:
- align s1 with sc - results in gaps being inserted in both sequences

SC YFPHFDLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL
S1 YFPHFDLSHG-AQVKG--KKVADALTNAVAHVDDMPNAL

- align s2 with sc - if gaps must be inserted - insert in previously aligned sequences

SC YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVAHLDDLPGAL
S1 YFPHF-DLS-----HG-AQVKG-GKKVA-----DALTNAVAHVDDMPNAL
S2 FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS

- and so on (note: if gaps coincide with previously introduced gaps no need to change previously aligned sequences)

SC YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVAHLDDLPGAL
S1 YFPHF-DLS-----HG-AQVKG-GKKVA-----DALTNAVAHVDDMPNAL
S2 FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS
S3 LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL

CLUSTALW

- Compute pairwise distances between strings
- Build phylogenetic tree
- Build iterative alignment by following tree edges

MUSCLE

- Just like ClustalW but different
- Build pairwise distances - uses fast heuristic (just count \# of k-mers in common)
- Build phylogenetic tree
- Build multiple alignment based on tree
- Re-estimate distances based on tree
- Re-build tree
- Re-build multiple alignment
- etc. etc. etc.

Biological relevance of multiple alignments

 xenopun
 prosophila Honeybee Loeust Dameolfly contipede scrine Shrimp

Motif finding

Motif finding

- Special case of multiple alignment - find short "motif" that occurs almost identically in multiple DNA sequences
- Local multiple alignment (the definition of multiple alignment sofar was global)
- Motif finding - special requirements
- inexact alignment sought
- but no gaps allowed
- Biological significance
- gene promoters
- transcription factor binding sites
- other elements involved in gene regulation

Motif finding...example

TTAGAGGTTGACTATTCAACTTTTGAGGAGGCCTAG TAGAGC AGCCGACTTGCAACTTAGGCGTGGTCAGTGCCCTAA TAGAGC GGCCTATTTGGGCCACTTAGACCTTCAACTTTTGCATAGAGC CCACAGTTAGATGTCCAAAAGACAAATATAGAGGGCTAGAGC ACACGGACTGCGTTCAATGCTTACAGCAGATTGAGTTAGAGC TTCAAAGACTTGACTATTGTTCAACTTTGAAGACTATAGAGC Promoter region

Gene

Motif "sequence logo"

Finding motifs - Gibbs sampling

- Observations:
- since no gaps - all motifs have equal length (assume known value - m)
- exhaustive search of promoter region is impractical: all combinations of substrings of length m among k sequences of length $L=(L-m+1)^{k}$
- Solution: random search

1. Pick random substring of length m from each of the strings
2. Construct multiple alignment (easy since no gaps) and compute profile
3. Pick random sequence s and remove from multiple alignment. Recompute profile.
4. Within removed sequence, search for best fit to profile and insert into alignment
5. Repeat until profile does not improve

Gibbs sampling...cont

- How do you find best match to profile?
- What is overall running time of algorithm?

Phylogenetic trees

Phylogenetic trees - how evolution works

- http://www.tolweb.org/tree/ - the tree of life

Anatomy of a tree

Phylogenetic trees are usually binary (though they don't have to) CMSC423 Fall 2008

Phylogeny questions

- Given several organisms \& a set of features (usually sequence, but also morphological: wing shape/color...)
- A. Given a phylogenetic tree - figure out what the ancestors looked like (what are the features of internal nodes)

- B. Find the phylogenetic tree that best describes the common evolutionary heritage of the organisms

[^0]: CO YFPHFKDLS-----HGSAQVKAHGKKVG-----DALTLAVAHVDDTPGAL
 S1 YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVAHLDDLPGAL
 S2 YFPHF-DLS-----HG-AQVKG-GKKVA-----DALTNAVAHVDDMPNAL
 S3 FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS
 S4 LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL

