CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 13

multiple alignment motif finding

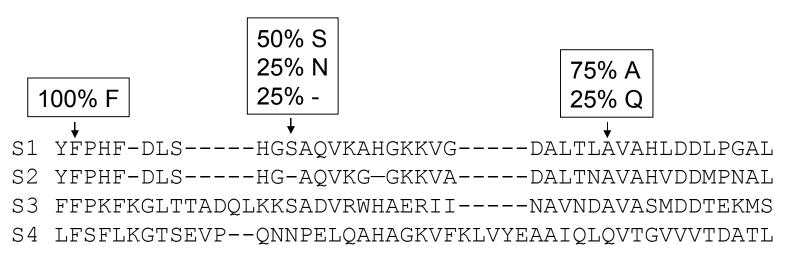
Recap

- Multiple alignment is expensive O(n^k) for k sequences of length n (use same DP as for pairwise but on a k-dimensional matrix)
- Approximation algorithm (star alignment) can find a solution in O(n²k²) which is at most twice worse than the best alignment

Consensus sequence

- For every column j in the alignment, pick the amino-acid AA that minimizes ∑_id(AA, S_i[j]) (usually becomes majority rule)
- Intuitively this is the sequence of the ancestor of all the sequences in the multiple alignment
- We can define the multiple alignment problem as:
 - find the multiple alignment that minimizes $\sum_i D(CO, S_i)$
- Still NP hard, but consensus sequence useful on it's own.

CO YFPHFKDLS----HGSAQVKAHGKKVG----DALTLAVAHVDDTPGAL


- S1 YFPHF-DLS----HGSAQVKAHGKKVG----DALTLAVAHLDDLPGAL
- S2 YFPHF-DLS----HG-AQVKG-GKKVA----DALTNAVAHVDDMPNAL
- S3 FFPKFKGLTTADQLKKSADVRWHAERII----NAVNDAVASMDDTEKMS
- S4 LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL

Iterative alignment revisited

- Pick a sequence (e.g. SC) as a starting point
- Align S1 to it & build consensus for the alignment
- Take S2 and align it to the consensus (instead of SC)
- repeat...
- Problem: consensus (or any single sequence) ignores the other sequences being aligned.
- Solution: keep track of % of each amino-acid aligned in each column
- score of alignment to profile combination of scores to each AA.

Profile alignment

- Solution: keep track of % of each amino-acid aligned in each column
- score of alignment to profile combination of scores to each AA.

 Score(prof1, prof2) = weighted average of all pairs of aminoacids

Practical algorithms

Iterative alignment

SC YFPHFDLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL

- Take sequences si in order:
 - align s1 with sc results in gaps being inserted in both sequences

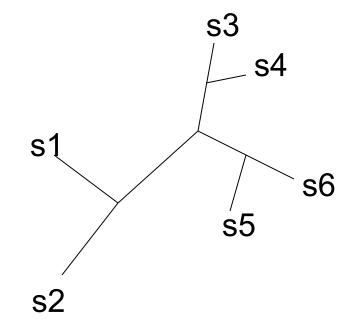
SC YFPHFDLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL

S1 YFPHFDLSHG-AQVKG--KKVADALTNAVAHVDDMPNAL
align s2 with sc - if gaps must be inserted – insert in previously aligned sequences

SC YFPHF-DLS----HGSAQVKAHGKKVG----DALTLAVAHLDDLPGAL

S1 YFPHF-DLS----HG-AQVKG-GKKVA----DALTNAVAHVDDMPNAL

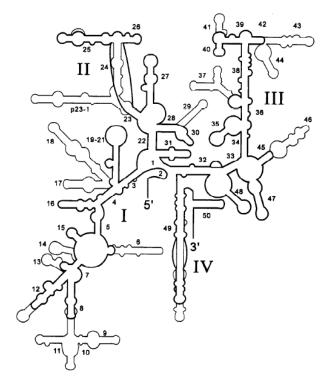
S2 FFPKFKGLTTADQLKKSADVRWHAERII----NAVNDAVASMDDTEKMS


 and so on (note: if gaps coincide with previously introduced gaps no need to change previously aligned sequences)

SC YFPHF-DLS----HGSAQVKAHGKKVG----DALTLAVAHLDDLPGAL

- S1 YFPHF-DLS----HG-AQVKG-GKKVA----DALTNAVAHVDDMPNAL
- S2 FFPKFKGLTTADQLKKSADVRWHAERII----NAVNDAVASMDDTEKMS
- S3 LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL

CLUSTALW


- Compute pairwise distances between strings
- Build phylogenetic tree
- Build iterative alignment by following tree edges

MUSCLE

- Just like ClustalW but different
- Build pairwise distances uses fast heuristic (just count # of k-mers in common)
- Build phylogenetic tree
- Build multiple alignment based on tree
- Re-estimate distances based on tree
- Re-build tree
- Re-build multiple alignment
- etc. etc. etc.

Biological relevance of multiple alignments

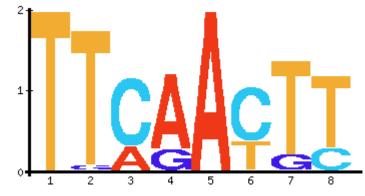
							3	2															з	3									3	4								_		3	5	_										3 5	÷ ،	_			
Cow																																																									U				
Ratite Bird	υ	c	a í	c i			U	σ.	c.		e	•			x	e	c	c	х	c	- 装	1	3 3		a .		G	a		a	ċ	C	U .	a	U-1	0	c :	U,		а 3	λ.	- 8	. ۱	1	đ	۸	U		٠	- (c	С	c ·	аŝ	c (Д, u	ιŪ	ŧ		сž	A.
Scincid Lizard	σ	G	G	c . i	2 0	c 🕯	D.	a i	C.	U	¢	c		e	λ	u	с			c	8	187	J 11		α.		G	G	*	a	C	C	U	6	U. (Ċ,	C	0	λ.	U I	λ.	- 8	N 8	1 \$	1 0	X	U	λ	С	- (c	С	c	a 🛛	c z		U	į-	с	u J	Α
Xenopus																																																									: 0				
Cyprinid Fish	U	G	G	e i	. (c 1	U	G	ć	c	U	U		G	λ	c	с	с	с	с	3	-		K -	σ.		G	G	2	Ø	c	C	0	0	01		C	U J	λ	6	A.	- 🖁		. 8	: 0	λ	U	λ	λ	- (С	С	c ·	Сİ	c e	5 U	1 2	é -	λ	λ 3	A.
Sea Urchin	υ	G	G	c i		G	U.	υ		U	ć	c			х	с	с	U	c	c				G .	G .		G	G	•	ø	c	U	v	đ	c 1	c .	A .	0	υ	σ.	N.	- 3	N 8	, ,	: d	×	U	λ	λ	-	c	С	с.	λ 🖁	e .		А	-	х	u J	λ.
Drosophila	υ	a	G	ĉ,		G I	ช		D	U	U	υ	A	-	G	U	с	U	λ	U		-		10	G		G	G	2	2	C	c	U	G	U	0	U	Ú I	G	υ.	λ.	- 8	N 1		0	λ	U	A	λ	- 1	U	С	с.	х 🖁	e e	38 A	. 0	i-	G	G J	A
Honeybee	U	c i	G .	c i			C	ΰ.	D	IJ	D	U		υ	λ	U	с	υ	λ	G	i ĝ	3 1	y 1	A (94)	Ġ.	A	G		U.	G	U	U	U.	G	U 1	C.	G		U	U,			υ 🖁	1.1	l g	Ę٨	U	A	G	- 1	u	c	с.	лŝ	G . 6		υ	-	A	λ.	G
Locust	υ	G	a	c i		a 10	υ.		U	U	D	¢		-	U	U	с	с	λ	U	i i	3 4	¢)		σ.		G	G		x	c	c	U	X	0	C.	U	c	×.	U ·	G	- 1		J 1	t G	Įλ	U	λ	G	- '	U	А	c.	лŝ	c (3.4	0 3	į-	υ	υA	Α.
Demselfly	U	G .	с	c (G	D	2	U	U	U	U		-	a	U	c	u	u	u					a		G	G			c	c	U	0	u I	u .	a	u		U		- 1		з.	. 0	Ëλ	u	A	a		u	С	c.	λŝ	e e	5 7	. 0	-	u	u ·	a
Centipede		-																																																							c				
Scorpion		G .	~) C				
Brine Shrimp																																																									G				
Onychophoran		6	•																																																						U				
Snail		<u>د</u>	2																																																						c				
		-	-	-		-																																																			,				
Earthworm	U	G	G	C (6 (6	0	G	U	3.60	.0	U			-	0	C	^	^	C	3	7k	2473	0.0993	- 9 C (*	Sec.		9			en er	963			9.8	1 1111	Had	M	^	•	^	^		10.100	07,000	с п	v	^	^	_	-	-	-		1.000		<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
		_		_		_																			_		_	_		_	_			_							-												~	-	c ,	-					
MOTIFS	U	G	g	C	G (G	u	r	У	¥	Y	¥	٨								3	1	x i	a	G	a	G	G	^	ĸ	c	X	U	a	u ;	¥	Y	Y .	r	Y	r		r ;	r	- 6	• •	a	a	r		x	x	-	L	- 1	,	¥				
		G	us.		- 8	2.94	195			<u>a</u> r	60	22	80	é							ŝ				n		_	_			25		2	23	989 1993	ŭ6	584)		~			-	88.	. 8		Ξ.	~			_	~	~	~	n			ט נ	Ĭ.	_	_	-
Nematode			5 A.	outrout.	moh	88	176-18		100		- T	ж.,	(***		-	<u>.</u>	÷.				100				2	611	~	-		-	5.66	с а		-	2		2		-	-			2	100	0.0112	8		2	2		2	2	2	2		2.	. 🖉	į.			
Sea Anemone	U	G	G	C	υı	۵.	υ	υ	C		C	U	8 X	-	U	U	υ	С	G	λ	1			A (1)	G	λ.	G	G	Α.	G	C	G	U	Ģ.	υ.	Λ.	G	U	U	U	~	• 8	u i	0.0	1097	6) A	U	G	ui		-	0	9	- 8	A6:33	#8 U	1.58	s =		• •	•

CMSC423 Fall 2008

Motif finding

Motif finding

- Special case of multiple alignment find short "motif" that occurs almost identically in multiple DNA sequences
- Local multiple alignment (the definition of multiple alignment sofar was global)
- Motif finding special requirements
 - inexact alignment sought
 - but no gaps allowed
- Biological significance
 - gene promoters
 - transcription factor binding sites
 - other elements involved in gene regulation


Motif finding...example

TTAGAGGTTGACTA**TTCAACTT**TTGAGGAGGCCTAG*TAGAGC* AGCCGACT**TGCAACTT**AGGCGTGGTCAGTGCCCTAA*TAGAGC* GGCCTATTTGGGCCACTTAGACC**TTCAACTT**TTGCA*TAGAGC* CCACAG**TTAGATGT**CCAAAAGACAAATATAGAGGGC*TAGAGC* ACACGGACTGCG**TTCAATGC**TTACAGCAGATTGAGT*TAGAGC* TTCAAAGACTTGACTATTG**TTCAACTT**TGAAGACTA*TAGAGC*

Promoter region

Gene

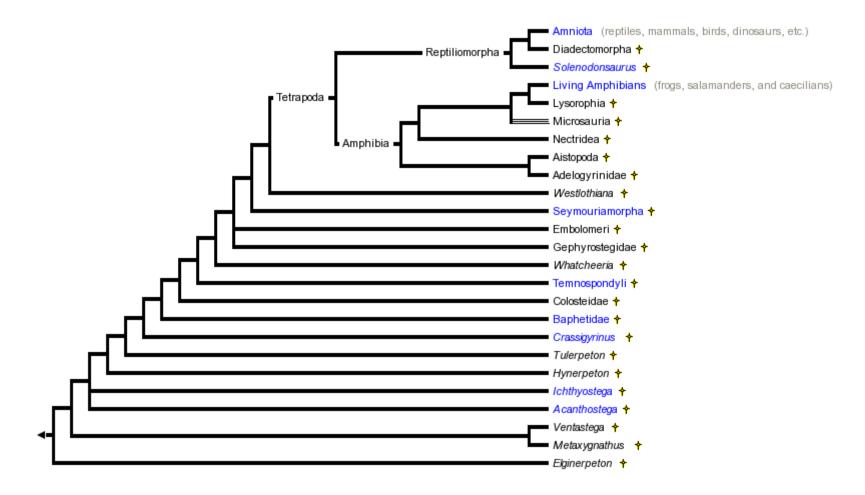
Motif "sequence logo"

CMSC423 Fall 2008

From genetics.mgh.harvard.edu/sheenlab/

Finding motifs – Gibbs sampling

- Observations:
 - since no gaps all motifs have equal length (assume known value m)
 - exhaustive search of promoter region is impractical: all combinations of substrings of length m among k sequences of length $L = (L - m + 1)^k$
- Solution: random search
- 1. Pick random substring of length m from each of the strings
- 2. Construct multiple alignment (easy since no gaps) and compute profile
- 3. Pick random sequence s and remove from multiple alignment. Recompute profile.
- 4. Within removed sequence, search for best fit to profile and insert into alignment
- 5. Repeat until profile does not improve CMSC423 Fall 2008


Gibbs sampling...cont

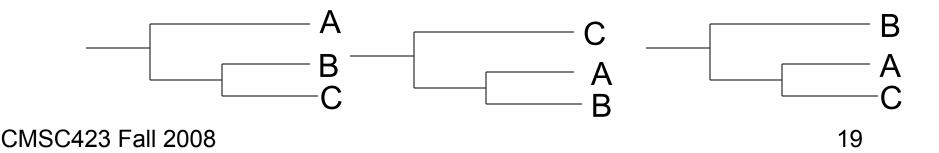
- How do you find best match to profile?
- What is overall running time of algorithm?

Phylogenetic trees

Phylogenetic trees – how evolution works

http://www.tolweb.org/tree/ - the tree of life

Anatomy of a tree Root Unrooted tree bacteria node eukarya leaf archaea branch length


Phylogenetic trees are usually binary (though they don't have to) CMSC423 Fall 2008 18

Phylogeny questions

- Given several organisms & a set of features (usually sequence, but also morphological: wing shape/color...)
- A. Given a phylogenetic tree figure out what the ancestors looked like (what are the features of internal nodes)

• B. Find the phylogenetic tree that best describes the common evolutionary heritage of the organisms

