CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 15

Genome assembly

Admin

- Project questions?

Questions/answers

- Why do you need a multiple alignment for phylogeny?
- What is the running time of the neighbor-joining algorithm, given k sequences of length L ?
- What is the parsimony score of the following tree, and what are the labels at internal nodes?

Reading assignment

- http://www.cbcb.umd.edu/research/assembly_primer.shtml
- Chapter 4.5 - coverage statistics
- Chapter 8 - genome assembly

Shotgun sequencing

Overview of terms

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT

Shortest common superstring problem

Given a set of strings, $\Sigma=\left(s_{1}, \ldots, s_{n}\right)$, determine the shortest string S such that every s_{i} is a sub-string of S.
NP-hard ...ACAGGACTGCACAGATTGATAG approximations: $4,3,2.89, \ldots$

Greedy algorithm (4-approximation)

phrap, TIGR Assembler, CAP

Greedy algorithm details

Compute all pairwise overlaps
*Pick best (e.g. in terms of alignment score) overlap
Join corresponding reads
Repeat from * until no more joins possible

- How do you compute an overlap alignment?
- Hint: modify Smith-Waterman dynamic programming algorithm

Repeats (where greedy fails)

	AAAAAA
AAAAAAAAAAAAAAAAAAAA	AAAAAA
AAAAAA AAAAAA AAAAAA	AAAAAA
AAAAAA AAAAAA	AAAAAA
AAAAAA AAAAAA	AAAAAA
	AAAAAAA
	AAAAAA

Impact of randomness - non-uniform coverage

Imagine raindrops on a sidewalk

Lander-Waterman statistics

$L=$ read length
T = minimum overlap
G = genome size
$\mathrm{N}=$ number of reads
$\mathrm{c}=$ coverage (NL / G)
$\sigma=1-\mathrm{T} / \mathrm{L}$

E (\#islands) $=\mathrm{Ne}^{-\mathrm{co}}$
$E\left(\right.$ island size) $=L\left(e^{c \sigma}-1\right) / c+1-\sigma$
contig $=$ island with 2 or more reads

See chapter 4.5

All pairs alignment

- Needed by the assembler
- Try all pairs - must consider $\sim n^{2}$ pairs
- Smarter solution: only $n \times$ coverage (e.g. 8) pairs are possible
- Build a table of k-mers contained in sequences (single pass through the genome)
- Generate the pairs from k-mer table (single pass through kmer table)

Additional pairwise-alignment details

- 4 types of overlaps
- Often - assume first read is "forward"

- Representing the alignment

A-hang B-hang

- Why not store length of overlap?

Overlap-layout-consensus

Main entity: read
Relationship between reads: overlap

Paths through graphs and assembly

- Hamiltonian circuit: visit each node (city) exactly once, returning to the start

Sequencing by hybridization

AACAGTAGCTAGATG
AACA TAGC AGAT
ACAG AGCT GATG
CAGT GCTA
AGTA CTAG
GTAG TAGA
probes - all possible k-mers

Assembling SBH data

Main entity: oligomer (overlap)
Relationship between oligomers: adjacency
ACCTGATGCCAATTGCACT...

CTGAT follows CCTGA (they share 4 nucleotides: CTGA)

Problem: given all the k -mers, find the original string

In assembly: fake the SBH experiment - break the reads into k-mers

Eulerian circuit

- Eulerian circuit: visit each edge (bridge) exactly once and come back to the start

deBruijn graph

- Nodes - set of k-mers obtained from the reads
- Edges - link k-mers that overlap by k-1 letters ACCAGTGCA
CCAGTGCAT
- This formulation particularly useful for very short reads
- Solution - Eulerian path through the graph
- Note - multiple Eulerian paths possible (exponential number) due to repeats

deBruijn graph of Mycoplasma genitalium

Read-length vs. genome complexity

