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Gene finding



Admin
• Project 2- listed on the website
• Midterm answers
• Other questions?



Gene finding as machine learning
• Main question: does the ORF look like a gene?

• Given a set of examples – genes we already know
• and a string of DNA (e.g. ORF)
• compute the likelihood that the ORF is a gene.
• Note: more complex than motif finding

• Codon usage bias – not all codons for a same amino-
acid are equally likely

• K-mer (e.g. 6-mer) frequencies (instead of single-base 
frequencies in motif finding)



UUU F 0.76  UCU S 0.27  UAU Y 0.77  UGU C 0.73 
UUC F 0.24  UCC S 0.08  UAC Y 0.23  UGC C 0.27  
UUA L 0.49  UCA S 0.23  UAA * 0.66  UGA * 0.14 
UUG L 0.13  UCG S 0.06  UAG * 0.20  UGG W 1.00 

CUU L 0.16  CCU P 0.28  CAU H 0.79  CGU R 0.26 
CUC L 0.04  CCC P 0.07  CAC H 0.21  CGC R 0.06
CUA L 0.14  CCA P 0.49  CAA Q 0.78  CGA R 0.16
CUG L 0.05  CCG P 0.16  CAG Q 0.22  CGG R 0.05 

AUU I 0.57  ACU T 0.36  AAU N 0.76  AGU S 0.28 
AUC I 0.15  ACC T 0.08  AAC N 0.24  AGC S 0.08
AUA I 0.28  ACA T 0.42  AAA K 0.74  AGA R 0.36 
AUG M 1.00  ACG T 0.15  AAG K 0.26  AGG R 0.11

GUU V 0.32  GCU A 0.34  GAU D 0.81  GGU G 0.30 
GUC V 0.07  GCC A 0.07  GAC D 0.19  GGC G 0.09
GUA V 0.43  GCA A 0.44  GAA E 0.75  GGA G 0.41 
GUG V 0.18  GCG A 0.15  GAG E 0.25  GGG G 0.20

Bacillus anthracis codon usage



A more general solution
• Hidden Markov models
• States, transition probabilities, emission probabilities

• p(Si|Sj) – probability of transitioning to state i if we are 
in state j

• p(σi|Sj) – probability of emitting symbol σi if we are in 
state j

S1 S2 S3... ...
p(S2|S1)

p(S1|S2)

p(S3|S2)

p(S2|S3)

p(S1|S1)
p(S2|S2) p(S3|S3)

p(σi|S1) p(σi|S1) p(σi|S1)



Why “Hidden”?
• Observers can see the emitted symbols of an HMM 

but have no ability to know which state the HMM is 
currently in.

• Thus, the goal is to infer the most likely hidden states 
of an HMM based on the given sequence of emitted 
symbols.



HMM Parameters
• Σ: set of emission characters.

– Ex.: Σ = {H, T} for coin tossing
– Σ = {1, 2, 3, 4, 5, 6} for dice tossing
– Σ = {A, C, T, G} for DNA

• Q: set of hidden states, each emitting symbols from Σ.
– Q={Fair,Biased} for coin tossing
– Q={gene, not gene} for bacteria
– Q={exon, intron, intergenic) for eukaryotes



GlimmerHMM model



Questions we can ask with HMMs
• Given an observed sequence of emitted characters (a 

string of DNA), what is the most likely sequence of 
states that generated the observed sequence?
– given a string of DNA and the model, break it up into genes
– solved by Viterbi algorithm

• Given an observed sequence of emitted characters, 
what is the most likely state the model was in at time 
t?
– given a string of DNA, how likely is it that a certain location is 

inside a gene?
– solved by forward-backward algorithm



Training – the key to HMMs
• So far we've assumed that all probabilities are known.
• The training problem: 

– given an HMM (just the states and connections)
– given several examples (e.g. known genes and intergenic 

regions)
– compute the transition and emission probabilities

• Training is difficult!!  
• Baum-Welch algorithm – iterative optimization

– start with estimates of the probabilities
– run model with training data
– re-estimate probabilities based on performance on training 

data



Viterbi algorithm
• Given an HMM and an output string, compute the 

most likely path through the HMM that would result in 
the given string

Intron Exon Intergenic

p(Inter|Exon) p(Inter|Inter)

p(Exon|Exon)

p(Exon|Inter)

p(Exon|Intr)

p(Intr|Exon)

p(Intr|Intr)

p(emission|Intr) p(emission|Exon) p(emission|Inter)



Viterbi algorithm
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dynamic programming algorithm 



Viterbi algorithm
• S(k,i) – most likely path for x0..xi ends in state k

• S(l, i + 1) = maxk { S(k, i) * p(l|k) * p(emission of xi+1|l)}
                = p(emission of xi+1|l) * maxk {S(k,i) * p(l|k)}

• The optimal path is found by back-tracking
• Note: Viterbi is equivalent to finding longest path in a 

graph
• Implementation problem: underflow – many products 

of very small values
• Solution: work in log-space

– instead of probabilities use logarithm of probabilities
– instead of products use sums



Forward-backward algorithm
• Given an HMM and an output string of length n, what 

is the probability that the HMM was in state k
at time i < n?

• Similar dynamic programming as Viterbi however 
done twice:
– from t0 to ti (forwards)
– from tn to ti (backwards) 

• In Viterbi recurrence replace max with ∑
– likelihood is a sum of probabilities - all possible paths that go 

through state k at time i



Notes on training an HMM
• Gene finder output

– a set of predictions (exon, intron, intergenic, etc.)
– a probability (likelihood) for each prediction

• In addition to setting parameters for the model you 
also need to pick a threshold – how high should the 
probability be before you "believe" it.



Picking the "right" threshold
• Cross-validation (hold-out cross validation)

– divide training set into Training and Hold sets
– train in "Training"
– test result on "Hold" – adjust threshold until results look best

• k-fold cross-validation
– divide training set into K sub-sets
– train on K-1 sets and test on one of them
– repeat for different choices of "test" set



Assessing accuracy
• Confusion matrix: compare predictions to truth

Gene Not-gene

Gene True positive False positive
Type I error

Not-gene False 
negative
Type II error

True negative

prediction

truth



Measures of accuracy

• Sensitivity (Sn, recall) – TP/TP+FN
• Specificity (Sp) – TN/TN+FP 
• Precision – TP/TP+FP

• Usually reported as (Sp, Sn), or (precision, recall).
• Also:

F-score = 2*Precision*Recall/(Precision + Recall)

TP FP

FN TN



Receiver operating characteristic


