CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 18

Gene finding

Admin

- Project 2- listed on the website

 - Midterm answers
- Other questions?

Gene finding as machine learning

- Main question: does the ORF look like a gene?
- Given a set of examples - genes we already know
- and a string of DNA (e.g. ORF)
- compute the likelihood that the ORF is a gene.
- Note: more complex than motif finding
- Codon usage bias - not all codons for a same aminoacid are equally likely
- K-mer (e.g. 6-mer) frequencies (instead of single-base frequencies in motif finding)

Bacillus anthracis codon usage

UUU	F	0.76	UCU	S	0.27	UAU	Y	0.77	UGU C	0.73
UUC	F	0.24	UCC	S	0.08	UAC	Y	0.23	UGC	C
0.27										
UUA	L	0.49	UCA	S	0.23	UAA	\star	0.66	UGA	0.14
UUG L	0.13	UCG	S	0.06	UAG	0.20	UGG W	1.00		

CUU L 0.16 CCU P 0.28 CAU H 0.79 CGU R 0.26 CUC L 0.04 CCC P 0.07 CAC H 0.21 CGC R 0.06 CUA L 0.14 CCA P 0.49 CAA Q 0.78 CGA R 0.16 CUG L 0.05 CCG P 0.16 CAG Q 0.22 CGG R 0.05

AUU I 0.57 ACU T 0.36 AAU N 0.76 AGU S 0.28 AUC I 0.15 ACC T 0.08 AAC N 0.24 AGC S 0.08 AUA I 0.28 ACA T 0.42 AAA $K 0.74$ AGA R 0.36 AUG M 1.00 ACG T 0.15 AAG K 0.26 AGG R 0.11 GUU V 0.32 GCU A 0.34 GAU D 0.81 GGU G 0.30 GUC V 0.07 GCC A 0.07 GAC D 0.19 GGC G 0.09 GUA V 0.43 GCA A 0.44 GAA E 0.75 GGA G 0.41 GUG V 0.18 GCG A 0.15 GAG E 0.25 GGG G 0.20

A more general solution

- Hidden Markov models
- States, transition probabilities, emission probabilities

- $p\left(S_{i} \mid S_{j}\right)$ - probability of transitioning to state i if we are in state j
- $p\left(\sigma_{i} \mid S_{j}\right)$ - probability of emitting symbol σ_{i} if we are in state j

Why "Hidden"?

- Observers can see the emitted symbols of an HMM but have no ability to know which state the HMM is currently in.
- Thus, the goal is to infer the most likely hidden states of an HMM based on the given sequence of emitted symbols.

HMM Parameters

- Σ : set of emission characters.
- Ex.: $\Sigma=\{H, T\}$ for coin tossing
$-\Sigma=\{1,2,3,4,5,6\}$ for dice tossing
$-\Sigma=\{\mathrm{A}, \mathrm{C}, \mathrm{T}, \mathrm{G}\}$ for DNA
- Q: set of hidden states, each emitting symbols from Σ.
$-Q=\{$ Fair,Biased $\}$ for coin tossing
$-Q=\{g e n e$, not gene $\}$ for bacteria
- $\mathrm{Q}=\{$ exon, intron, intergenic) for eukaryotes

GlimmerHMM model

Questions we can ask with HMMs

- Given an observed sequence of emitted characters (a string of DNA), what is the most likely sequence of states that generated the observed sequence?
- given a string of DNA and the model, break it up into genes
- solved by Viterbi algorithm
- Given an observed sequence of emitted characters, what is the most likely state the model was in at time t ?
- given a string of DNA, how likely is it that a certain location is inside a gene?
- solved by forward-backward algorithm

Training - the key to HMMs

- So far we've assumed that all probabilities are known.
- The training problem:
- given an HMM (just the states and connections)
- given several examples (e.g. known genes and intergenic regions)
- compute the transition and emission probabilities
- Training is difficult!!
- Baum-Welch algorithm - iterative optimization
- start with estimates of the probabilities
- run model with training data
- re-estimate probabilities based on performance on training data

Viterbi algorithm

- Given an HMM and an output string, compute the most likely path through the HMM that would result in the given string
p (Intr||ntr)
p(Inter|Exon) $\quad \mathrm{p}$ (Inter|Inter)
Exon Intergenic
p(Intr|Exon) $\quad \mathrm{p}$ (Exon|Inter)
p(emission|Intr)
p(emission|Exon)
p(emission|Inter)

Viterbi algorithm

Observations:
dynamic programming algorithm

Viterbi algorithm

- $S(k, i)$ - most likely path for $x_{0} . . x_{i}$ ends in state k
- $S(l, i+1)=\max _{k}\left\{S(k, i)^{*} p(l \mid k) * p\left(e m i s s i o n ~ o f ~ x_{i+1} \mid l\right)\right\}$ $=p\left(e m i s s i o n \text { of } x_{i+1} \|\right)^{*} \max _{k}\left\{S(k, i){ }^{*} p(l \mid k)\right\}$
- The optimal path is found by back-tracking
- Note: Viterbi is equivalent to finding longest path in a graph
- Implementation problem: underflow - many products of very small values
- Solution: work in log-space
- instead of probabilities use logarithm of probabilities
- instead of products use sums

Forward-backward algorithm

- Given an HMM and an output string of length n, what is the probability that the HMM was in state k at time $\mathrm{i}<\mathrm{n}$?
- Similar dynamic programming as Viterbi however done twice:
- from t0 to ti (forwards)
- from tn to ti (backwards)
- In Viterbi recurrence replace max with \sum
- likelihood is a sum of probabilities - all possible paths that go through state k at time i

Notes on training an HMM

- Gene finder output
- a set of predictions (exon, intron, intergenic, etc.)
- a probability (likelihood) for each prediction
- In addition to setting parameters for the model you also need to pick a threshold - how high should the probability be before you "believe" it.

Picking the "right" threshold

- Cross-validation (hold-out cross validation)
- divide training set into Training and Hold sets
- train in "Training"
- test result on "Hold" - adjust threshold until results look best
- k-fold cross-validation
- divide training set into K sub-sets
- train on K-1 sets and test on one of them
- repeat for different choices of "test" set

Assessing accuracy

- Confusion matrix: compare predictions to truth

prediction		Gene	Not-gene
	Gene	True positive	False positive Type I error
	Not-gene	False negative Type II error	True negative

Measures of accuracy

- Sensitivity (Sn, recall) - TP/TP+FN
- Specificity (Sp) - TN/TN+FP
- Precision - TP/TP+FP
- Usually reported as (Sp, Sn), or (precision, recall).
- Also:

F-score $=$ 2*Precision*Recall/(Precision + Recall $)$

TP	FP
FN	TN

Receiver operating characteristic

TP	FP
FN	TN
1	1

