CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 18

Gene finding

Admin

- Project 2- listed on the website
- Midterm answers
- Other questions?

Gene finding as machine learning

- Main question: does the ORF look like a gene?
- Given a set of examples genes we already know
- and a string of DNA (e.g. ORF)
- compute the likelihood that the ORF is a gene.
- Note: more complex than motif finding
- Codon usage bias not all codons for a same aminoacid are equally likely
- K-mer (e.g. 6-mer) frequencies (instead of single-base frequencies in motif finding)

Bacillus anthracis codon usage 0.76 UUU ਜ 0.73 0.24 0.08 0.23 UGC UUC UCC S UAC Y 0.27 F С 0.49 0.23 0.66 0.14UCA S UGA * UUA Τ. UAA * 0.06 0.13 UCG S UAG 0.20 UGG 1.00 UUG Τ. * M 0.16 0.28 CAU 0.79 CGU R 0.26 CUU CCU Ρ Η Τ. 0.04 CCC 0.07 0.21 CGC R 0.06 CUC T, Р CAC Η R 0.16 CUA T, 0.14 CCA Ρ 0.49 CAA Q 0.78 CGA 0.05 CUG CCG Р 0.16 0.22 CGG R 0.05 L CAG Q 0.36 0.28 0.57 Т 0.76 AGU S AUU ACU AAU Ν Т 0.15 0.08 0.24 ACC Т AAC Ν AGC S 0.08 AUC Τ 0.28 0.74AUA Т ACA Т 0.42 AAA Κ AGA R 0.36 1.00 Т 0.15 K 0.26 AUG М ACG AAG AGG R 0.11 GUU V 0.32 GCU Α 0.34 GAU 0.81 GGU G 0.30 \square GUC Α 0.07 0.190.09 V 0.07 GCC GAC \square GGC G 0.75 0.43 GCA Α 0.44 GAA GGA 0.41 GUA V Ε G A 0.15 0.25 G 0.20 GUG V 0.18 GCG GAG Ε GGG

A more general solution

- Hidden Markov models
- States, transition probabilities, emission probabilities

- p(S_i|S_j) probability of transitioning to state i if we are in state j
- $p(\sigma_{_i}|S_{_j})$ probability of emitting symbol $\sigma_{_i}$ if we are in state j

Why "Hidden"?

- Observers can see the emitted symbols of an HMM but have no ability to know which state the HMM is currently in.
- Thus, the goal is to infer the most likely hidden states of an HMM based on the given sequence of emitted symbols.

HMM Parameters

- Σ: set of emission characters.
 - Ex.: $\Sigma = \{H, T\}$ for coin tossing
 - $-\Sigma = \{1, 2, 3, 4, 5, 6\}$ for dice tossing
 - $-\Sigma = \{A, C, T, G\}$ for DNA
- Q: set of hidden states, each emitting symbols from Σ .
 - Q={Fair,Biased} for coin tossing
 - Q={gene, not gene} for bacteria
 - Q={exon, intron, intergenic) for eukaryotes

GlimmerHMM model

Questions we can ask with HMMs

- Given an observed sequence of emitted characters (a string of DNA), what is the most likely sequence of states that generated the observed sequence?
 - given a string of DNA and the model, break it up into genes
 - solved by Viterbi algorithm
- Given an observed sequence of emitted characters, what is the most likely state the model was in at time t?
 - given a string of DNA, how likely is it that a certain location is inside a gene?
 - solved by forward-backward algorithm

Training – the key to HMMs

- So far we've assumed that all probabilities are known.
- The training problem:
 - given an HMM (just the states and connections)
 - given several examples (e.g. known genes and intergenic regions)
 - compute the transition and emission probabilities
- Training is difficult!!
- Baum-Welch algorithm iterative optimization
 - start with estimates of the probabilities
 - run model with training data
 - re-estimate probabilities based on performance on training data

Viterbi algorithm

 Given an HMM and an output string, compute the most likely path through the HMM that would result in the given string

Viterbi algorithm tO t1 t2 Intron Intron Intron Exon Exon Exon Intergenic Intergenic Intergenic **Observations:** x2 x1 **x**0 $\prod e_{state_j}(x_j) p(state_j | state_{j-1}) \quad \text{over all possible state paths}$ maximize

dynamic programming algorithm

Viterbi algorithm

- S(k,i) most likely path for x₀...x_i ends in state k
- S(I, i + 1) = max_k { S(k, i) * p(I|k) * p(emission of x_{i+1}|I)} = p(emission of x_{i+1}|I) * max_k {S(k,i) * p(I|k)}
- The optimal path is found by back-tracking
- Note: Viterbi is equivalent to finding longest path in a graph
- Implementation problem: underflow many products of very small values
- Solution: work in log-space
 - instead of probabilities use logarithm of probabilities
 - instead of products use sums

Forward-backward algorithm

- Given an HMM and an output string of length n, what is the probability that the HMM was in state k at time i < n?
- Similar dynamic programming as Viterbi however done twice:
 - from t0 to ti (forwards)
 - from tn to ti (backwards)
- In Viterbi recurrence replace max with \sum
 - likelihood is a sum of probabilities all possible paths that go through state k at time i

Notes on training an HMM

- Gene finder output
 - a set of predictions (exon, intron, intergenic, etc.)
 - a probability (likelihood) for each prediction
- In addition to setting parameters for the model you also need to pick a threshold – how high should the probability be before you "believe" it.

Picking the "right" threshold

- Cross-validation (hold-out cross validation)
 - divide training set into Training and Hold sets
 - train in "Training"
 - test result on "Hold" adjust threshold until results look best
- k-fold cross-validation
 - divide training set into K sub-sets
 - train on K-1 sets and test on one of them
 - repeat for different choices of "test" set

Assessing accuracy

• Confusion matrix: compare predictions to truth

predictionGeneNot-geneGeneTrue positiveFalse positive
Type I errorNot-geneFalse
negative
Type II errorTrue negative
negative
Type II error

truth

Measures of accuracy

- Sensitivity (Sn, recall) TP/TP+FN
- Specificity (Sp) TN/TN+FP
- Precision TP/TP+FP
- Usually reported as (Sp, Sn), or (precision, recall).
- Also: F-score = 2*Precision*Recall/(Precision + Recall)

Receiver operating characteristic

