CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 2

Molecular biology primer

Admin...

- Have you tried your glue accounts?
- Issues/concerns/questions about class and policies?
- Reading "assignment" - Chapter 1 in the book.

The tree of life

http://www.fossilmuseum.net/Tree_of_Life/Domains_Archaea_Bacteria/

DNA - the code of life

- Purines A, G, caffeine
- Pyrimidines C, T

- Sugar backbone (ticker tape)
- Double-stranded - allows replication

pictures from wikipedia

DNA in the computer

- FASTA/multi-FASTA file format

>gi|110227054|gb|AE004091.2| Pseudomonas aeruginosa PAO1, complete genome
TTTAAAGAGACCGGCGATTCTAGTGAAATCGAACGGGCAGGTCAATTTCCAACCAGCGATGACGTAATAG ATAGATACAAGGAAGTCATTTTTCTTTTAAAGGATAGAAACGGTTAATGCTCTTGGGACGGCGCTTTTCT GTGCATAACTCGATGAAGCCCAGCAATTGCGTGTTTCTCCGGCAGGCAAAAGGTTGTCGAGAACCGGTGT CGAGGCTGTTTCCTTCCTGAGCGAAGCCTGGGGATGAACGAGATGGTTATCCACAGCGGTTTTTTCCACA CGGCTGTGCGCAGGGATGTACCCCCTTCAAAGCAAGGGTTATCCACAAAGTCCAGGACGACCGTCCGTCG

- Parsers easy to write, also available in a variety of software libraries

Central dogma

The Central Dogma of Molecular Biology

AGGTACGCGTACCTGACAGG

Phage CRO Repressor on DNA. Andrew Coulson \& Roger Sayle with RasMol, University of Edinburgh, 1993

http://www.accessexcellence.org/RC/VL/GG/central.html

Genes, transcription, translation

- DNA - RNA - Thymine replaced by Uracil (T-U)
- The transcribed segments are called genes

ACCGUACCAUGUUA . . . AUAGGCUGAGCA

- AUG - start codon (also amino-acid Methionine)
- UAA, UAG, UGA - stop codons
- Genes are read in sets of 3 nucleotides during translation $-4^{3}=64$ possible combinations
- Each combination codes for one of 20 amino-acids the building blocks for proteins

Amino-acid translation table

Second letter

Genes/proteins in the computer

>gi|15596155|ref|NP_249649.1| basic amino acid, MKVMKWSAIALAVSAGSTQFAVADAFVSDQAEAKGFIEDSSLDLLLRNYYFNRDGKSGSGDRVDWTQGFL TTYESGFTQGTVGFGVDAFGYLGLKLDGTSDKTGTGNLPVMNDGKPRDDYSRAGGAVKVRISKTMLKWGE MQPTAPVFAAGGSRLFPQTATGFQLQSSEFEGLDLEAGHFTEGKEPTTVKSRGELYATYAGETAKSADFI GGRYAITDNLSASLYGAELEDIYRQYYLNSNYTIPLASDQSLGFDFNIYRTNDEGKAKAGDISNTTWSLA AAYTLDAHTFTLAYQKVHGDQPFDYIGFGRNGSGAGGDSIFLANSVQYSDFNGPGEKSWQARYDLNLASY GVPGLTFMVRYINGKDIDGTKMSDNNVGYKNYGYGEDGKHHETNLEAKYVVQSGPAKDLSFRIRQAWHRA NADQGEGDQNEFRLIVDYPLSIL

- Same FASTA/multi-FASTA but with bigger alphabet

Genes/proteins in the computer

gene

```
comp1ement(1043983..1045314)
    /gene="oprD"
    /locus_tag="PA0958"
    complement(1043983..1045314)
    /gene="oprD"
    /locus_tag="PA0958"
    /note="Product name confidence: Class 1 (Function
    experimentally demonstrated in P. aeruginosa)"
    /codon_start=1
    /trans1_tab1e=11
    /product="Basic amino acid, basic peptide and
    imipenem outer membrane porin OprD precursor"
    /protein_id="AAG04347.1"
    /db_xref="GI:9946864"
```

CDS

- GenBank file format

Translation - complications

Alternative splicing examples

(a) Alternative selection of promoters (e.g., myosin primary transcript)

(b) Alternative selection of cleavage/polyadenylation sites (e.g., tropomyosin transcript)

(c) Intron retaining mode (e.g., transposase primary transcript)

(d) Exon cassette mode (e.g., troponin primary transcript)

Protein structure

http://www.tulane.edu/~biochem/med/second.htm

Protein structure

- Primary structure - sequence
- Secondary structure - structure motifs
- Tertiary structure - 3D position of atoms
- Quaternary structure - docking of proteins

Phage CRO Repressor on DNA. Andrew Coulson \& Roger Sayle with RasMol, University of Edinburgh, 1993

Protein structure data (PDB format)

ATOM	1	N	MET A	1	20.020	28.662	42.801	1.00	51.80	N
ATOM	2	CA	MET A	1	20.598	29.950	42.438	1.00	52.13	C
ATOM	3	C	MET A	1	22.118	29.937	42.576	1.00	47.63	C
ATOM	4	O	MET A	1	22.660	29.623	43.636	1.00	49.97	0
ATOM	5	CB	MET A	1	20.009	31.073	43.293	1.00	51.36	C
ATOM	6	CG	MET A	1	20.331	32.468	42.765	1.00	51.13	C
ATOM	7	SD	MET A	1	21.406	33.373	43.921	1.00103 .49	S	
ATOM	8	CE	MET A	1	21.129	32.396	45.410	1.00	55.43	C
ATOM	9	N	LEU A	2	22.799	30.285	41.490	1.00	41.99	N
ATOM	10	CA	LEU A	2	24.249	30.178	41.424	1.00	37.25	C

RECAP

- DNA is a string formed with letters A, C, T, G (called nucleotides or bases)
- DNA is double-stranded - allows replication: transfer of genetic "code" from parents to offspring
- DNA is naturally oriented from 5' to 3' and the two strands are anti-parallel
- If you know the sequence of one strand, you can obtain the sequence of the other by reversecomplementation

```
5' AGACCTAGTGCACGGCTACTACC 3'
5' CCATCATCGGCACGTGATCCAGA 3' Reverse
5' GGTAGTAGCCGTGCACTAGGTCT 3' Complement
```


RECAP

- Central Dogma of molecular biology:
- DNA - RNA (transcription)
- RNA - Protein (translation)
- The transcribed segments of DNA are called "genes"
- Translation occurs in sets of 3 nucleotides - codons
- Each codon encodes one of 20 amino-acids and 3 stop-codons
- In eukaryotes the genes may be split into multiple exons, separated by introns: DNA segments that will not get translated
- The protein is translated from an RNA representing the concatenation of the exons of the gene

The "new" biology

- DNA is not the only heritable information
- Epigenetic information: RNA molecules, DNA methylation patterns (affects coiling on DNA on histones)
- Complex regulation patterns
- Genes turn on other genes
- Genes inhibit other genes
- RNA interference - small RNA molecules can destroy specific transcripts (down-regulate production)

Playing with DNA

Biologists can:

- Cut the DNA - restriction enzymes (often palindromes) (Nobel prize - Arber, Nathans, Smith)

- Attach "things" to DNA (either single or double-strand)

TAGGCACGTTGCAACTACGGC

TGCAACGT

- "Amplify" DNA - Polymerase Chain Reaction (Nobel prize - Mullis)

Polymerase chain reaction (PCR)

How does PCR work?

- 1. Start: 1 double-stranded molecule
- 1. Denature: 2 singlestranded molecules
- 1. Anneal: 2 single-stranded molecules with primers attached
- 1. Extend: 2 double-stranded molecules - one "long" (L) strand and one "short" (S) (terminated at a primer)
- 2. Start: 2 double-stranded molecules: L+S, L+S
- 2. Denature: $2 \times L$ strands, $2 \times S$ strands
- 2. Anneal: all strands with primers attached
- 2. Extend: 2 double-stranded molecules: L+S, L+S, 2 double-stranded molecules: S+SS, S+SS
SS - strand terminated at both ends with a primer

PCR Recurrences

- $\mathrm{L}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}, \mathrm{SS}_{\mathrm{n}}$ - \# of strands of each type at cycle n
- $L_{n}=L_{n-1}=2$
- $S_{n}=S_{n-1}+L_{n-1}=S_{n-1}+2=2$ * $(n-1)=O(n)$
- $\mathrm{SS}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n}-1}+2 * \mathrm{SS}_{\mathrm{n}-1}=\mathrm{O}\left(2^{\mathrm{n}}\right)$
- The sequence between the primers (SS) is amplified exponentially - will quickly overtake the solution

