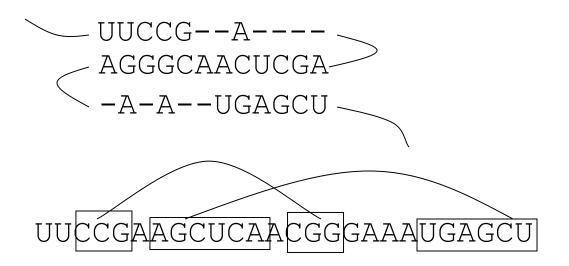

CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 20

RNA folding

RNA folding

 Function of RNA molecules depends on how they fold, based on nucleotide base-pairing




Types of structures

Nested (hairpin)

Pseudo-knots

From multiple alignment to structure

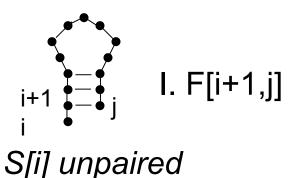
- Find columns in the alignment where mutations are correlated
- Mutual information how correlated are the columns?

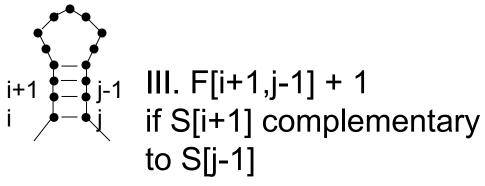
$$M_{i,j} = \sum_{x_i, x_j} f_{x_i x_j} \log \left(\frac{f_{x_i x_j}}{f_{x_i} f_{x_j}} \right)$$

 $M_{i,j}$ = mutual information between columns i and j f_{xixj} = frequency of each of 16 pairs of nucleotides at columns i and j f_{xi} = frequency of each of 4 nucleotides at column i f_{xj} = frequency of each of 4 nucleotides at column j

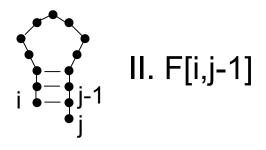
Mutual information

- Ranges from 0 to 2 for a 4-letter alphabet
- Correlated columns mutual information high
- Advantages:
 - Don't need to know how RNA folds pseudo-knots should "pop" out of the alignment
- Disadvantages:
 - Need many sequences in an alignment (to compute frequencies)
 - The aligned sequences must be sufficiently divergent (conserved columns provide no information)


Nussinov's algorithm


- Assumes no pseudo-knots
- Dynamic programming approach maximize # of pairings

- S string of nucleotides representing the RNA molecule
- Sub-problem F[i,j] score of folding just S[i..j]
- Initial values: F[i-1,i] = F[i,i] = F[i, i+1] = 0


Nussinov's algorithm

F[i,j] is the maximum of:

S[i] paired with S[j]

IV. \max_{k} F[i,k]+F[k+1,j]

S[j] unpaired

Branch

Questions

- In what order do we fill the dynamic programming table?
- How can we ensure that "loops" consist of at least k nucleotides?

 Note: related to CYK parsing algorithm for Chomsky Normal Form grammars

	G	G	G	A	Α	Α	U	C	C
G									
G									
G									
A									
A									
U									
C C									
C									

F[i+1, j] F[i, j - 1] F[i+1, j-1] + 1 (if paired) max_kF[i,k] + F[k+1,j]

	G	G	G	A	А	A	U	С	С
G	0	0	0	Ο	0	0	1	2	3_
G	0	0	0	0	0	0	1	2	_ ພ•
G		0	0	0	0	0	1	2	2
Α			0	0	0	0	1 /	1	1
A				0	0	0 -	1	1	1
A					04	- 0	1	1	1
I I						0	0	0	0
U							0	0	0
С								0	0

GGGAAAUCC ((.(..))) .((..()))

A better objective function

- Find the RNA fold that minimizes the Gibbs free energy
- Zucker's algorithm keeps track of:
 - Stacking energy f(# of base-pairs in a stem)
 - Loop energy f(length of loop)
 - Bulge energy f(length of bulge)
 - Dangle energy f(length of dangle)
- Computation is done with an extension of the traditional (Nussinov) dynamic programming approach
- One extension: compute sub-optimal folds
 - during backtracking, try multiple paths

Question

How do you change Nussinov's algorithm to allow the computation of the stacking energy?

Hint: think affine gap penalties.

Protein folding

- Protein shape determines protein function
- Protein sequence determines protein shape (Anfinsen's experiment)
- Levinthal's paradox space of possible protein conformations is exponentially large, yet proteins fold fast (µsec – minutes).
- Corollary: proteins must "know" how to fold (i.e. they don't search the entire space of conformations)
- Note: much easier to find a protein's sequence than its structure

Protein folding

- Note: mis-folded proteins may cause disease (e.g. Creutzfeld-Jakob a.k.a. mad cow)
- Drugs (e.g. antibiotics) often inhibit protein function knowing structure can help design drugs
- Folding@home lend your computer's unused cycles to help fold proteins (like SETI@home) (do you believe in evolution or aliens?)