CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 22

Gene networks Real-life examples

Biological networks

- Genes/proteins do not exist in isolation
- Interactions between genes or proteins can be represented as graphs
- Examples:
 - metabolic pathways
 - regulatory networks
 - protein-protein interactions (e.g. yeast 2-hybrid)
 - genetic interactions (synthetic lethality)

CELLCYCLE

Gene networks research at UMD

- Active area of research in Carl Kingsford's lab
- Data will be generated in Najib El Sayed's lab
- My own research on microbial communities will translate into such data.

Metagenomics

Human microbiome

- Gill, S.R., et al., *Metagenomic analysis of the human distal gut microbiome.* Science, 2006. **312**(5778): p. 1355-9.
- http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation

 Examine all bacteria in an environment (human gut) at the same time using high-throughput techniques

Why the gut biome? We are what we eat

- Majority of human commensal bacteria live in the gut (more bacterial cells than human cells by an order of magnitude – 100 trillion bacterial cells)
- We rely on gut bacteria for nutrition
- Gut bacteria important for our development
- Imbalances in bacterial populations correlate with disease

Environment "exploration"

- Culture-based
 - heavily biased (1-5% bacteria easily cultured)
 - amenable to many types of analyses
- Directed rRNA sequencing
 - less biased
 - limited analyses possible
- Random shotgun sequencing
 - "differently" biased
 - amenable to many types of analyses
 \$\$\$

Project overview

- Collaboration between TIGR, Stanford, and Washington University (St. Louis)
- Sequenced fecal samples from two healthy individuals
- (XX, XY) (veg+,veg-) correlation lost due to IRB
- Also performed "traditional" amplified 16S rDNA sequencing

	Subject 1	Subject 2	Total
Shotgun reads	65,059	74,462	139,521
amplified 16S rDNA clones	3,514	3,601	7,115

All shotgun reads from ~ 2 kbp library

Metagenomic pipeline

- Assembly (graph theory, string matching)

 puzzle-together shotgun reads into contigs and scaffolds
- Gene finding (machine learning)
- Binning (clustering, statistics)
 assign each contig to a taxonomic unit
- Annotation (natural language processing)
 gene roles, pathways, orthologous groups, etc
- Analysis (statistics, graph theory, data visualization)
 - diversity
 - comparison between environments
 - metabolic potential
 - -etc.

Comparative Assembly (AMOScmp)

Binning results

Order	amplified rRNA clones		shotgun rRNA (bases)		shotgun blastx(bases)	
Subject	1	2	1	2	1	2
Clostridiales	2,777	3,386	70,055	102,140	4,396,295	5,562,074
Bifidobacteriales	30	• 0	31,443	5,101	2,882,267	851,278
Coriobacteriales	4	6	25,781	10,804	0	0
Methanobacteriales	0	0	18,188	17,970	943,256	946,329

Metagenomics...

- This work is ongoing at UMD with support from NSF and NIH
- Paid summer internships available contact me if you are interested.

Assembly with optical maps

Optical mapping data

- Restriction mapping (set/bag of fragment sizes)
 - restriction digest
 - spectrum of sizes defines "fingerprint"

- - -

Optical mapping
 (list/array of fragment)

Contig matching problem

Find "best" placement of a contid on the map

$$\chi^2 \text{score} = \sum_{k=1}^{j} \left(\frac{c_k - o_k}{\sigma_k} \right)$$

- by best we mean:
 - most matched sites - best correspondence between f^{j} fragment sizes

Solution to the matching problem

Simple dynamic programming (O(m²n²))

$$S[i, j] = max_{0 \le k \le i, 0 \le l \le j} - C_r \times (i - k + l - j) - \frac{\left(\sum_{s=k}^{i} c_s - \sum_{t=l}^{j} o_t\right)^2}{\sum_{t=l}^{j} \sigma_t^2} + S[k - 1, l - 1]$$

- Main challenge: this procedure always returns a "best" match
- Solution:

Results – real data

Yersinia kristensenii Optical map: 350 sites (AFLII) Assembly: 86 contigs, 404 sites

48 contigs have > 1 site

45 contigs can be placed

30 unique matches15 placed by greedy

Yersinia aldovae Optical map: 360 sites (AFLII) Assembly: 104 contigs, 411 sites 58 contigs have > 1 site 52 contigs can be placed 31 have unique matches 21 placed by greedy

4.4Mb (93%) in scaffold Un-placed contigs appear to be mis-assemblies

Nagarajan, Read, Pop. Bioinformatics 2008.

With Niranjan Nagarajan

Voxelation

Voxelation

- Brown, V.M., et al., *High-throughput imaging of brain gene expression*. Genome Res, 2002. 12(2): p. 244-54.
- http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation
- Brown, V.M., et al., Multiplex three-dimensional brain gene expression mapping in a mouse model of Parkinson's disease. Genome Res, 2002. 12(6): p. 868-84.
- http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation
- Gene expression information in a spatial context
- Combines microarray analysis with computer graphics

Figure 2 Voxelation scheme

Vanessa M. Brown et al. Genome Res. 2002; 12: 868-884

- Mouse brain cut up into voxels
- Run a separate microarray experiment on each voxel

Figure 4 Spatial gene expression patterns for the subset of correlated genes

Vanessa M. Brown et al. Genome Res. 2002; 12: 868-884

Cold Spring Harbor Laboratory Press

Figure 7 SVD delineates anatomical regions of the brain

Vanessa M. Brown et al. Genome Res. 2002; 12: 868-884

Cold Spring Harbor Laboratory Press

Figure 5 Putative regulatory elements shared between groups of correlated and anticorrelated genes

Vanessa M. Brown et al. Genome Res. 2002; 12: 868-884

Figure 6 Differentially expressed genes

Vanessa M. Brown et al. Genome Res. 2002; 12: 868-884

Cold Spring Harbor Laboratory Press

Research at UMD

 Possible future work with Amitabh Varshney (CS) and Cristian Castillo-Davis (Biology)