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Gene networks
Real-life examples



Biological networks
• Genes/proteins do not exist in isolation
• Interactions between genes or proteins can be 

represented as graphs
• Examples:

– metabolic pathways
– regulatory networks
– protein-protein interactions (e.g. yeast 2-hybrid)
– genetic interactions (synthetic lethality)









Gene networks research at UMD
• Active area of research in Carl Kingsford's lab
• Data will be generated in Najib El Sayed's lab
• My own research on microbial communities will 

translate into such data.



Metagenomics



Human microbiome
• Gill, S.R., et al., Metagenomic analysis of the human distal gut microbiome. Science, 

2006. 312(5778): p. 1355-9.
• http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16741115

• Examine all bacteria in an environment (human gut) at the same time 
using high-throughput techniques

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16741115


Why the gut biome?
We are what we eat

• Majority of human commensal bacteria live 
in the gut
(more bacterial cells than human cells by 
an order of magnitude – 100 trillion 
bacterial cells)

• We rely on gut bacteria for nutrition

• Gut bacteria important for our 
development

• Imbalances in bacterial populations 
correlate with disease

• Our microbiome – another organ of our 
body



Environment “exploration”
• Culture-based

– heavily biased (1-5% bacteria easily cultured)
– amenable to many types of analyses

• Directed rRNA sequencing
– less biased
– limited analyses possible

• Random shotgun sequencing
– “differently” biased
– amenable to many types of analyses
– $$$



Project overview
• Collaboration between TIGR, Stanford, and 

Washington University (St. Louis)
• Sequenced fecal samples from two healthy 

individuals
(XX, XY) (veg+,veg-) correlation lost due to IRB
• Also performed “traditional” amplified 16S rDNA 

sequencing

3,601
74,462

Subject 2

7,1153,514amplified 16S 
rDNA clones

139,52165,059Shotgun reads
TotalSubject 1

All shotgun reads from ~ 2 kbp library



Metagenomic pipeline
• Assembly (graph theory, string matching)

– puzzle-together shotgun reads into contigs and 
scaffolds

• Gene finding (machine learning)
• Binning (clustering, statistics)

– assign each contig to a taxonomic unit
• Annotation (natural language processing)

– gene roles, pathways, orthologous groups, etc
• Analysis (statistics, graph theory, data 

visualization)
– diversity
– comparison between environments
– metabolic potential
– etc.



Comparative Assembly (AMOScmp)

Genome size           2.26 MB                                                             ~1.9 MB
Coverage                 0.7                                                                       3.5
# contigs              789                                                                      222
# bases         988,707                                                            1,538,516

> 50% of archaeal contigs are likely M. smithii



Binning results

946,329943,25617,97018,18800Methanobacteriales

0010,80425,78164Coriobacteriales

851,2782,882,2675,10131,443030Bifidobacteriales

5,562,0744,396,295102,14070,0553,3862,777Clostridiales
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Metagenomics...
• This work is ongoing at UMD with support from 

NSF and NIH
• Paid summer internships available – contact me 

if you are interested.



Assembly with optical maps



Optical mapping data

• Restriction mapping
(set/bag of fragment 
sizes)
– restriction digest
– spectrum of sizes 

defines “fingerprint”

• Optical mapping
(list/array of fragment 
sizes)
– ordered restriction 

digest
– order of fragment sized 

defines fingerprint

#.  size (stdev)
1.  1.2   (0.3)
2.  4.1   (0.8)
3.  2.2   (0.5)
...



Contig matching problem
• Find “best” placement of a contig on the map

• by best we mean:
– most matched sites
– best correspondence between fragment sizes

• we optimize # of matched sites given alignment 
is “reasonable” 
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Solution to the matching problem
• Simple dynamic programming (O(m2n2))

• Main challenge: this procedure always returns a 
“best” match

• Solution:
– compute P-value – likelihood a random match would 

score better
– randomized bootstrapping: randomly permute contig 

and find best match...
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Results – real data

Yersinia kristensenii
Optical map: 350 sites (AFLII)

Assembly: 86 contigs, 404 sites

48 contigs have > 1 site

45 contigs can be placed

30 unique matches 
15 placed by greedy

4.4Mb (93%) in scaffold

Yersinia aldovae
Optical map: 360 sites (AFLII)

Assembly: 104 contigs, 411 sites

58 contigs have > 1 site

52 contigs can be placed

31 have unique matches 
21 placed by greedy

3.7Mb (88%) in scaffoldUn-placed contigs appear to be mis-assemblies
With Niranjan NagarajanNagarajan, Read, Pop.  Bioinformatics 2008.



Voxelation



Voxelation
• Brown, V.M., et al., High-throughput imaging of brain gene expression. Genome Res, 

2002. 12(2): p. 244-54.
• http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11827944 

• Brown, V.M., et al., Multiplex three-dimensional brain gene expression mapping in a 
mouse model of Parkinson's disease. Genome Res, 2002. 12(6): p. 868-84.

• http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12045141 

• Gene expression information in a spatial context
• Combines microarray analysis with computer graphics 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11827944%20
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12045141%20


Vanessa M. Brown et al. Genome Res. 2002; 12: 868-884

Figure 2   Voxelation scheme

• Mouse brain cut up into voxels
• Run a separate microarray experiment on each voxel



Vanessa M. Brown et al. Genome Res. 2002; 12: 868-884

Figure 4   Spatial gene expression patterns for the subset of correlated genes



Vanessa M. Brown et al. Genome Res. 2002; 12: 868-884

Figure 7 SVD delineates anatomical regions of the brain



Vanessa M. Brown et al. Genome Res. 2002; 12: 868-884

Figure 5   Putative regulatory elements shared between groups of correlated and 
anticorrelated genes



Vanessa M. Brown et al. Genome Res. 2002; 12: 868-884

Figure 6 Differentially expressed genes



Research at UMD
• Possible future work with Amitabh Varshney 

(CS) and Cristian Castillo-Davis (Biology)


