
CMSC423: Bioinformatic Algorithms,
Databases and Tools

Lecture 6

Exact string matching
Suffix trees

Suffix arrays

String matching

CMSC423 Fall 2008 3

Sequence alignment: exact matching

ACAGGTACAGTTCCCTCGACACCTACTACCTAAGCCTACTCCTACT
CCTACTCCTACT

Text
Pattern

for i = 0 .. len(Text) {
 for j = 0 .. len(Pattern) {
 if (Pattern[j] != Text[i]) go to next i
 }
 if we got there pattern matches at i in Text
}

Running time = O(len(Text) * len(Pattern)) = O(mn)

What string achieves worst case?

CMSC423 Fall 2008 4

Worst case?

AA
AAAAAAAAAAAAT

(m – n + 1) * n comparisons

CMSC423 Fall 2008 5

Can we do better?
the Z algorithm (Gusfield)

For a string T, Z[i] is the length of the longest prefix of T[i..m]
that matches a prefix of T. Z[i] = 0 if the prefixes don't match.

T[0 .. Z[i]] = T[i .. i+Z[i] -1]

Z[i] i i + Z[i] - 1
A T

m

CMSC423 Fall 2008 6

Example Z values

ACAGGTACAGTTCCCTCGACACCTACTACCTAAG
0010004010000000003010002002000110

CMSC423 Fall 2008 7

Z[i] i i + Z[i] - 1

Can the Z values help in matching?

Pattern Text

If there exists i, s.t. Z[i] = length(Pattern)
 Pattern occurs in the Text starting at i

Create string Pattern$Text where $ is not in the alphabet

CMSC423 Fall 2008 8

example matching

• What is the largest Z value possible?

CCTACT$ACAGGTACAGTTCCCTCGACACCTACTACCTAAG
01001000100000100002310100106100100410000

CMSC423 Fall 2008 9

Can Z values be computed in linear time?

Z[1]?

AAAGGTACAGTTCCCTCGACACCTACTACCTAAG

compare T[1] with T[0], T[2] with T[1], etc. until mismatch
Z[1] = 2

This simple process is still expensive:
T[2] is compared when computing both Z[1] and Z[2].

Trick to computing Z values in linear time:
each comparison must involve a character that was
not compared before

Since there are only m characters in the string, the overall
of comparisons will be O(m).

CMSC423 Fall 2008 10

Basic idea: 1-D dynamic programming
Can Z[i] be computed with the help of Z[j] for j < i?

i

j

Assume there exists j < i, s.t. j + Z[j] – 1 > i
then Z[i – j + 1] provides information about Z[i]

If there is no such j, simply compare characters T[i..] to T[0..]
since they have not been seen before.

i-j+1

Z[j]

CMSC423 Fall 2008 11

Three cases
Let j < i be the coordinate that maximizes j + Z[j] – 1
(intuitively, the Z[j] that extends the furthest)

I. Z[i – j + 1] < Z[j] – i + j – 1 => Z[i] = Z[i – j + 1]

i

ji-j+1

Z[j]

i

ji-j+1

Z[j]

i

ji-j+1

Z[j]
A C C

II. Z[i – j + 1] > Z[j] – i + j – 1 => Z[i] = Z[j] –i + j - 1

III. Z[i – j + 1] = Z[j] – i + j – 1 => Z[i] = ??, compare from
 i + Z[i – j + 1]

A C

???

CMSC423 Fall 2008 12

Time complexity analysis
• Why do these tricks save us time?

1. Cases I and II take constant time per Z-value computed –
total time spent in these cases is O(n)

2. Case III might involve 1 or more comparisons per Z-value
 however:
 - every successful comparison (match) shifts the

rightmost character that has been visited
 - every unsuccessful comparison terminates the “round”

and algorithm moves on to the next Z-value

 total time spent in III cannot be more than # of characters in
the text

Overall running time is O(n)

