CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 6

Exact string matching Suffix trees
Suffix arrays

String matching

Sequence alignment: exact matching

```
ACAGGTACAGTTCCCTCGACACCTACTACCTAAG
```

for i = 0 .. len(Text) {

```
for i = 0 .. len(Text) {
    for j = 0 .. len(Pattern) {
    for j = 0 .. len(Pattern) {
            if (Pattern[j] != Text[i]) go to next i
            if (Pattern[j] != Text[i]) go to next i
        }
        }
        if we got there pattern matches at i in Text
        if we got there pattern matches at i in Text
}
```

}

```

Running time \(=O(\) len(Text \() * \operatorname{len}(\) Pattern \())=O(m n)\)
What string achieves worst case?

\section*{Worst case?}

АААААААААААААААААААААААААААААААААААААААААААААА AAAAAAAAAAAAT
\[
(m-n+1)^{*} n \text { comparisons }
\]

\section*{Can we do better?}

\section*{the \(Z\) algorithm (Gusfield)}

For a string \(T, Z[i]\) is the length of the longest prefix of \(T[i . . m]\) that matches a prefix of T . \(\mathrm{Z}[\mathrm{i}]=0\) if the prefixes don't match.
\(T[0\).. \(Z[i]]=T[i \quad . . i+Z[i]-1]\)


\section*{Example \(Z\) values}

\section*{ACAGGTACAGTTCCCTCGACACCTACTACCTAAG 0010004010000000003010002002000110}

\section*{Can the \(Z\) values help in matching?}

Create string Pattern\$Text where \$ is not in the alphabet


If there exists \(\mathrm{i}, \mathrm{s.t} . \mathrm{Z}[\mathrm{i}]=\) length(Pattern)
Pattern occurs in the Text starting at i

\section*{example matching}

\section*{CCTACT\$ACAGGTACAGTTCCCTCGACACCTACTACCTAAG 01001000100000100002310100106100100410000}
- What is the largest \(Z\) value possible?

\section*{Can \(Z\) values be computed in linear time?}

\section*{AAAGGTACAGTTCCCTCGACACCTACTACCTAAG}

Z[1]? compare \(\mathrm{T}[1]\) with \(\mathrm{T}[0], \mathrm{T}[2]\) with \(\mathrm{T}[1]\), etc. until mismatch \(Z[1]=2\)

This simple process is still expensive:
\(\mathrm{T}[2]\) is compared when computing both \(\mathrm{Z}[1]\) and \(\mathrm{Z}[2]\).
Trick to computing \(Z\) values in linear time: each comparison must involve a character that was not compared before

Since there are only m characters in the string, the overall \# of comparisons will be \(O(m)\).

\section*{Basic idea: 1-D dynamic programming}

Can \(Z[i]\) be computed with the help of \(Z[j]\) for j < i ?


Assume there exists j < i, s.t. j + Z[j] - \(1>\mathrm{i}\) then \(Z[i-j+1]\) provides information about \(Z[i]\)

If there is no such j , simply compare characters \(\mathrm{T}[i .\).\(] to T[0 .\). since they have not been seen before.

\section*{Three cases}

Let j < i be the coordinate that maximizes \(\mathrm{j}+\mathrm{Z}[\mathrm{j}]-1\) (intuitively, the \(Z[j]\) that extends the furthest)
I. \(Z[i-j+1]<Z[j]-i+j-1=>Z[i]=Z[i-j+1]\)


Z[j]
II. \(Z[i-j+1]>Z[j]-i+j-1=>Z[i]=Z[j]-i+j-1\)

III. \(Z[i-j+1]=Z[j]-i+j-1=>Z[i]=? ?\), compare from
i-j+1
j
\(i+Z[i-j+1]\)

\section*{Time complexity analysis}
- Why do these tricks save us time?
1. Cases I and II take constant time per Z-value computed total time spent in these cases is \(\mathrm{O}(\mathrm{n})\)
2. Case III might involve 1 or more comparisons per Z-value however:
- every successful comparison (match) shifts the rightmost character that has been visited
- every unsuccessful comparison terminates the "round" and algorithm moves on to the next Z-value
total time spent in III cannot be more than \# of characters in the text
Overall running time is \(\mathrm{O}(\mathrm{n})\)```

