
CMSC423 Fall 2008 1

CMSC423: Bioinformatic Algorithms, 
Databases and Tools

Lecture 8

Sequence alignment:
exact alignment 
inexact alignment

dynamic programming, gapped 
alignment



CMSC423 Fall 2008 2

Suffix trees for matching
• Suffix trees use O(n) space
• Suffix trees can be constructed in O(n) time
• Is CAT part of ATCATG ?
• Match from root, char by char
• If run out of query – found match
• otherwise, there is no match

• intuition: CAT is the prefix
of some suffix

AT
1,2

G$
6,7

T
2,2

CATG$
3,7

G$
6,7

CATG$
3,7 G$

6,7

CATG$
3,7

4 1

6

5 2

3

$
7,7 7



CMSC423 Fall 2008 3

Suffix links – useful for substring matches
• Does any part of AGATG match string AGCAGT?

AG
1,2

T$
6,7

G
2,2

CAGT$
3,7

T$
6,7

CAGT$
3,7 T$

6,7

CAGT$
3,7

4 1

6

5 2

3

$
7,7 7



CMSC423 Fall 2008 4

Other uses
• Finding repeats

– internal nodes with multiple children – DNA that occurs in 
multiple places in the genome

• Longest common substring of two strings
– build suffix tree of both strings.  Find lowest internal node 

that has leaves from both strings
– or: build suffix tree on one string and use suffix links to find 

longest match

• Note: running time for matching is O(|Pattern|), 
not O(|Pattern| + |Text|)   
(though O(|Text|) was spent in pre-processing



CMSC423 Fall 2008 5

Why do we care?
• Suffix trees are used for

– mapping reads to a genome (e.g. personal genomics)
– comparing genomes (comparative genomics)
– finding repeats
– identifying genome signatures 

• Exact matching – what to expect on exams
– build a suffix tree for a string
– answer some questions about one of the algorithms, e.g. for 

Z algorithm – is it necessary j be the farthest reaching Z-
value or just any Z value extending past i?

– do something with the help of some of the algorithms (e.g. 
look for repeats that occur exactly twice, etc.)



CMSC423 Fall 2008 6

Suffix arrays
• Suffix trees are expensive > 20 bytes / base
• Suffix arrays: lexicographically sort all suffixes

• Can quickly find the correct suffix through binary 
search

• Note: much less space, but longer running time 
(incur a log(n) term)

       ATG 4
ATCATG 1
    CATG 3
           G 6
  TCATG 2
         TG 5
            



CMSC423 Fall 2008 7

Suffix arrays and compression
• Burrows-Wheeler transform

BANANA

 BANANA$
 ANANA$B
 NANA$BA
 ANA$BAN
 NA$BANA
 A$BANAN
$BANANA

$BANANA 
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

sort ANNB$AA
compress

character before the suffix

BWT

Note: characters in last column occur in same order 
as in first column
Useful for matching within BWT 



CMSC423 Fall 2008 8

BWT – string matching
• Look for “BANA”
• Start at end (match right to left)
• Find character in rightmost column
• Identify corresponding range in first column
• Switch back to last column
• ...
• How do we know the first

A in the pattern is the 2nd/3rd
from the top of the matrix?

• Note: add'l data needed: 
# of times each letter appears
before every pos'n

• Running time?

O(len(P)) operations.  Each may cost O(log(len(T)))

ABN$
0000
1000
1010
1020
1120
1121
2121

$BANANA 
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

A
N

A

A
B



CMSC423 Fall 2008 9

Exact alignment recap
• Exact matching can be done efficiently:

O(|Text| + |Pattern|)

• Key idea: preprocess data to keep track of similar 
regions, then use information to "jump" over places 
where no match can occur

Z

KMP

B-M


