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ABSTRACT

T he application of whole-genome shotgun sequencing
to microbial communities represents a major
development in metagenomics, the study of

uncultured microbes via the tools of modern genomic
analysis. In the past year, whole-genome shotgun sequencing
projects of prokaryotic communities from an acid mine
biofilm, the Sargasso Sea, Minnesota farm soil, three deep-sea
whale falls, and deep-sea sediments have been reported,
adding to previously published work on viral communities
from marine and fecal samples. The interpretation of this
new kind of data poses a wide variety of exciting and difficult
bioinformatics problems. The aim of this review is to
introduce the bioinformatics community to this emerging
field by surveying existing techniques and promising new
approaches for several of the most interesting of these
computational problems.

Introduction

Metagenomics is the application of modern genomics
techniques to the study of communities of microbial
organisms directly in their natural environments, bypassing
the need for isolation and lab cultivation of individual species
[1–6]. The field has its roots in the culture-independent
retrieval of 16S rRNA genes, pioneered by Pace and
colleagues two decades ago [7]. Since then, metagenomics has
revolutionized microbiology by shifting focus away from
clonal isolates towards the estimated 99% of microbial
species that cannot currently be cultivated [8,9].

A typical metagenomics project begins with the
construction of a clone library from DNA sequence retrieved
from an environmental sample. Clones are then selected for
sequencing using either functional or sequence-based
screens. In the functional approach, genes retrieved from the
environment are heterologously expressed in a host, such as
Escherichia coli, and sophisticated functional screens employed
to detect clones expressing functions of interest [10–12]. This
approach has produced many exciting discoveries and
spawned several companies aiming to retrieve marketable
natural products from the environment (e.g., Diversa [http://
www.diversa.com] and Cubist Pharmaceuticals [http://
www.cubist.com]). In the sequence-based approach, clones
are selected for sequencing based on the presence of either
phylogenetically informative genes, such as 16S, or other
genes of biological interest [13–17]. The most prominent
discovery from this approach thus far is the discovery of the
proteorhodopsin gene from a marine community [14].

Recently, facilitated by the increasing capacity of
sequencing centers, whole-genome shotgun (WGS)

sequencing of the entire clone library has emerged as a third
approach to metagenomics. Unlike previous approaches,
which typically study a single gene or individual genomes, this
approach offers a more global view of the community,
allowing us to better assess levels of phylogenetic diversity
and intraspecies polymorphism, study the full gene
complement and metabolic pathways in the community, and
in some cases, reconstruct near-complete genome sequences.
WGS also has the potential to discover new genes that are too
diverged from currently known genes to be amplified with
PCR, or heterologously expressed in common hosts, and is
especially important in the case of viral communities because
of the lack of a universal gene analogous to 16S.
Nine shotgun sequencing projects of various communities

have been completed to date (Table 1). The biological insights
from these studies have been well-reviewed elsewhere [3,6].
Here, we highlight just two studies that exemplify the exciting

Table 1. Published Microbial Community Shotgun Sequencing
Projects

Type Community Species Sequence (Mbp) Reference

Prokaryote Acid mine biofilm 5 75 18

Sargasso Sea 1,800 1,600 19

Minnesota soil 3,000 100 21

Whale falls 150 25 21

Deep-sea sedimenta ? 111 22

Viralb Sea water 374-7114 0.74 30

Marine sediment 103–106 0.7 71

Human feces 1,200 0.037 54

Equine feces 233 0.018 72

aThe deep-sea sediment project used an additional 20 Mbp of fosmid sequence and also a filter to reduce the

complexity of the community prior to sequencing.
bThe viral projects used linker-amplified shotgun libraries.

DOI: 10.1371/journal.pcbi.0010024.t001
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possibilities of the approach. The acid mine biofilm
community [18] is an extremely simple model system,
consisting of only four dominant species, so a relatively
miniscule amount of shotgun sequencing (75 Mbp) was
enough to produce two near-complete genome sequences
and detailed information about metabolic pathways and
strain-level polymorphism. At the other end of the spectrum,
the Sargasso Sea community is extremely complex,
containing more than 1,800 species [19,20]. Nonetheless, with
an enormous amount of sequencing (1.6 Gbp), vast amounts
of previously unknown diversity were discovered, including
over 1.2 million new genes, 148 new species, and numerous
new rhodopsin genes. These results were especially surprising
given how well the community had been studied previously,
and suggest that equally large amounts of biological diversity
await future discovery.

In this review, we survey several of the most interesting
computational problems that arise from WGS sequencing of
communities. Traditional approaches to classic
bioinformatics problems such as assembly, gene finding, and
phylogeny need to be reconsidered in light of this new kind of
data, while new problems need to be addressed, including
how to compare communities, how to separate sequence
from different organisms in silico, and how to model
population structures using WGS assembly statistics. We
discuss all these problems and their connections to other
areas of bioinformatics, such as the assembly of highly
polymorphic genomes, gene expression analysis, and
supertree methods for phylogenetic reconstruction.

Although we have chosen to focus on the shotgun
sequencing approach, we stress that this is only one piece of
the exciting field of metagenomics, and that the integration
of other techniques such as large-insert clone sequencing,
microarray analysis, and proteomics will be vital to achieve a
comprehensive view of microbial communities.

Assembling Communities

The retrieval of nearly complete genomes from the
environment without prior lab cultivation is one of the most
spectacular results of metagenomics to date. A fundamental
limit on the WGS approach is that we can only expect to
assemble genomes that constitute a significant fraction of the
community [21]. Filtration and normalization techniques that
enrich the library for certain low-abundance species, a
common technique in the sequencing of symbionts, are thus
of vital importance when genome assembly is a primary goal
[22,23].

When a closely related, fully sequenced genome is available,
comparative assembly can easily be performed by extracting
the homologous sequence and assembling it with either a
comparative assembler [24] or an alignment program that can
handle draft sequence [25,26]. This approach is standard and
has been used many times for mixed sequence from multiple
species ([19,27]; E. Allen, unpublished data).

In the absence of an appropriate template genome,
traditional overlap–layout–consensus assembly [28] can be
done, augmented by an additional binning step, in which
scaffolds (contiguous sequence with gaps of approximately
known size) are separated into species-specific ‘‘bins.’’ The
first issue that needs to be overcome is the increased amount
of polymorphism, since each read will typically be sampled

from a different individual in the population. Second, highly
conserved sequence shared between different species can
seed contigs and cause false overlaps. In some communities,
even phylogenetically distant genomes can share a large
number of genes [29]. Careful study of the optimal overlap
parameters for separating out sequences at different
phylogenetic distances is important, and has been carried out
for viral communities [30], but not yet for prokaryotes.
The assembly of communities has strong similarities to the

assembly of highly polymorphic diploid eukaryotes, such as
Ciona savigny [26] and Candida albicans [31], if we view
prokaryotic strains as analogous to eukaryotic haplotypes.
The main difference is that in a microbial community, the
number of strains is unknown and potentially large, and their
relative abundance is also unknown and potentially skewed,
while in most eukaryotes we know a priori the number of
haplotypes and their relative abundance. This disadvantage is
mitigated somewhat by the small size and relative lack of
repetitive sequence in prokaryotic and viral genomes, so that
the issue of distinguishing alleles from paralogs and
polymorphism from repetitive sequence is less acute.
Thus far, both community assembly and polymorphic

eukaryotic assembly have been performed by running a
single-genome assembler, such as the Celera assembler [32] or
Jazz [33], and then manually post-processing the resulting
scaffolds to correct assembly errors. Contigs erroneously split
apart because of polymorphism are reconnected, and contigs
based on false overlaps are broken apart. Not surprisingly, ad
hoc heuristics must be employed to adapt programs
optimized for single-genome assembly: the Celera assembler,
for instance, treats high-depth contigs associated with
abundant species as repetitive sequence.
A promising direction for both these problems is co-

assembly, in which two very closely related genomes (or even
two assemblies of the same genome) are assembled
concurrently, using alignment information to complement
mate-pair information in ordering scaffolds and correcting
assembly errors in a structured, automated way. Thus far, the
only published work on this problem is that of Sundararajan
et al. [26], and even then, only for two genomes. For three or
more genomes, even the multiple alignment problem for
draft sequence is not solved. Large-insert clone sequence will
also be very useful since the entire clone comes from a single
strain or haplotype [22,34].
After scaffolds have been constructed, the next step is to bin

the scaffolds according to species or phylogenetic clade. The
gold standard for binning is the presence of a phylogenetically
informative gene. 16S rRNA, though universal, is decidedly not
single copy, so it is important to also consider other genes, such
as RecA, EFG, EFTu, and HSP70 [19]. In the absence of one of
these genes, genome signatures such as dinucleotide
frequencies, codon bias, and GC-content, developed by Karlin
and others in a long series of papers [35–38], can be used. These
signatures appear to work for scaffolds on the order of 50 kbp
in length, and, importantly, they seem to correlate only with
phylogenetic relatedness and not with the environment [36].
There is a web server, Tetra, that computes tetranucleotide
frequencies for metagenomics projects [39,40].
An additional source of evidence unique to WGS data is

scaffold read depth, which is expected to be proportional to
species abundance and thus can be used to separate high-
abundance from low-abundance species. Subtleties can arise,
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however, since a variable polymorphism rate across a genome
can cause conserved regions to be covered at high depth and
variable regions to be covered at low depth.

For some applications, completely accurate binning may
not be required. For example, gene finders based on hidden
Markov models (HMMs) require training data from closely
related species. The accuracy of the gene finder might be
improved by additional training data, even if it is not from
exactly the same species. One could even imagine running the
following iterative algorithm: find a set of putative genes,
construct gene trees with them, use the trees to crudely bin
the scaffolds, retrain the gene finder, and repeat.

To conclude our discussion of assembly, we consider the
important question of determining how much to sequence in
order to assemble genomes. When sequencing a single
genome, the Lander–Waterman model based on the
assumptions of independent and random reads implies that
the coverage of each base is distributed according to a
Poisson distribution with parameter c (the coverage).
Defining nk to be the number of bases covered exactly k times
and G to be the genome size, we have

E½nk� ¼ G � c
k � e�c

k!
: ð1Þ

First consider the problem of assembling the most abundant
genome at, say, 83 coverage. In the worst case, all species are
present in equal abundance. The Lander–Waterman equation
holds with G replaced by the sum of the sizes of all genomes of
species in the community (sometimes called the metagenome).
For the soil community, we have n2¼300,000 and G¼108/c, so
the equation implies a coverage of 0.006 and a total of 133 Gbp
of sequence needed to assemble the most abundant genome at
83 coverage, disregarding the problem of binning. The total
metagenome size predicted is G¼ 16.7 Gbp, corresponding to
2,800 E. coli–sized genomes, which is consistent with previous
estimates of soil microbial diversity and the 16S survey.

For the lower bound, we make the additional assumptions
that all genomes have length 6 Mbp and that a single
dominant species contributes all the overlaps in the assembly.
The same equation implies that 2 Gbp of additional sequence
is required for assembly at 83 coverage. This number is about
twice that calculated from the 16S survey, but this might be
explained by preferential amplification bias in PCR.

We performed similar calculations for the three whale fall
communities. In addition, we considered the problem of
assembling all genomes in these communities. Since the 16S
survey indicated that three dominant species constitute
approximately half the total abundance and all other species
have roughly equal abundance, the Lander–Waterman model
implies that the expected coverage should be distributed as
the mixture of two Poissons with equal weight. The results of
these calculations are summarized in Table 2. Similar results
were obtained by Venter et al. [19] and Breitbart et al. [30],
and there is also software for performing such calculations
(http://phage.sdsu.edu/phaccs) [41].

Comparative Metagenomics

Gene finding is a fundamental goal in virtually all
metagenomics projects, regardless of whether complete
genome sequences can be assembled or not. If large scaffolds
can be retrieved and binned, excellent HMM-based microbial

gene finders such as FGENESB (http://www.softberry.com)
and GLIMMER [42,43] can be used, in combination with
expectation-maximization (EM) techniques for unsupervised
training of the HMM parameters [44,45]. At the other
extreme, we have unassembled reads of roughly 700 bp.
These make up 50% of the total reads in the Sargasso Sea
dataset and 100% in soil. Since prokaryotic genes are
typically short, lack introns, and occur at high density
(roughly one in 1,000 bp), each read is likely to contain a
significant portion of a gene. For these reads, HMM
techniques are unlikely to be successful, leaving BLAST
search against a protein database or the community itself as
the only realistic alternative.
There have been two simulation studies verifying the

accuracy of BLAST for gene finding with single reads [21,46],
though it is difficult to make this kind of experiment
convincing, since the accuracy of the method is almost
entirely dependent on the availability of closely related
sequences in the database. We are not aware of any studies on
the accuracy of HMM-based techniques on sequences
significantly shorter than a whole genome, so we undertook a
simple experiment ourselves. We sampled simulated
‘‘contigs’’ of length 10 kb from the complete genome
sequence of Thermoplasma volcanium [47]. For each, we
predicted genes using GLIMMER trained only on long open
reading frames in the contig, and compared these to the
GLIMMER predictions when trained on long open reading
frames from the entire genome. We found that the results
were surprisingly good. Of 92 genes completely contained in
the ten simulated contigs, 86 were predicted exactly correctly.
There were 16 genes that crossed the boundaries of the
contigs, and GLIMMER was able to find truncated genes for
seven of these. On the other hand, five of the completely
spurious predictions all came from the same contig, which
suggests that HMM accuracy may not be uniform over the
length of the genome. More detailed studies on this problem
are needed to relate the length of assembled contigs to the
accuracy of the gene finder. An interesting direction is to
attempt to recover more partial genes that overlap contig
boundaries, firstly, by making the gene finder aware that
genes on the boundary may be truncated and, secondly, by
taking advantage of base quality scores for lower quality
sequence at the ends of contigs. Another interesting research
problem is to fine-tune gene finders for viral genomes.
The gene complement of a microbial community can be

used as a fingerprint of a community, allowing us to compare
different communities in a gene-centric, as opposed to

Table 2. Bounds on Amount of Sequence Needed to Assemble
Genomes (in Mbp)

Genome Soil Whale

Fall 1

Whale

Fall 2

Whale

Fall 3

Dominant genome—

upper bound

130,000 520 698 486

Dominant genome—

lower bound

2,000 123 131 119

All genomes (estimate) — 630 776 731

DOI: 10.1371/journal.pcbi.0010024.t002
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genome-centric, fashion [21]. In this method, predicted genes
are blasted against the COGs [48] or KEGG [49,50] databases
and each community is assigned a fingerprint vector with
entries corresponding to the number of hits to each COGs or
KEGG category. It is also possible to cluster the COGs hits by
function in order to compare the communities at a higher
level.

Fingerprint vectors are analogous to gene-expression-level
vectors in microarray analysis and any of the standard gene
expression clustering methods can be used [51]. We first

replicated the result of [21] by directly applying popular the
off-the-shelf gene expression tools, CLUSTER and TreeView
[52], to perform single-linkage hierarchical clustering on the
KEGG vectors from several communities (Figure 1).
Although the neat tree structure of the blue-yellow

microarray figure (Figure 1) looks appealing, it can also be
misleading at times because of the properties of UPGMA
(unweighted pair group method with arithmetic mean)
clustering. To check this, we applied principle components
analysis to the fingerprint vectors (Figure 2). While the high-

DOI: 10.1371/journal.pcbi.0010024.g001

Figure 1. Blue-Yellow Microarray Figure Applied to KEGG Vectors for Four Metagenomics Projects

The whale-fall and Sargasso sea data are partitioned into three different samples each. The rows correspond to the different datasets and the columns
to the 137 KEGG categories. Blue corresponds to underrepresentation and yellow to overrepresentation. Note that some branch lengths have been
adjusted for visualization purposes and do not correspond to an actual meaningful distance.

DOI: 10.1371/journal.pcbi.0010024.g002

Figure 2. Projection of the KEGG Vectors on the First Two Principle Components
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level result is similar, the principle components analysis
shows that the clustering of the communities is somewhat
more ambiguous than Figure 1 might suggest. For instance,
note the surprising proximity of whale-fall sample 1 to the
soil sample.

In addition to clustering, principle components analysis
has the additional advantage that dimensions of the principle
components with high magnitude may correspond to COGs
or KEGG sequences of interest, and the principle
components themselves may correspond to interesting
pathways or functions. This has not yet been fully explored
and could potentially be a source of new functional pathways
in communities.

Finally, since fingerprinting has been advocated as an
alternative to genome assembly when the amount of
sequence required for assembly is very high [21], an
important issue that needs to be discussed is how much
sequence is required to fingerprint. In the same spirit as our
Lander–Waterman calculations (equation 1), we estimate this
quantity using the observation that the number of genes per
shotgun read is very close to one [21,46]. Assuming a uniform
species abundance distribution, we get the classic coupon
collector’s problem [53], in which the number of reads
needed to collect a fraction f of the N genes in the
community is exactly

N log
1

1� f
: ð2Þ

Applying equation 2 to the soil community, if we assume
4,000 genes per genome and 3,000 genomes, then sampling
half the genes would require 6 Gbp of sequencing,
comparable to the lower bound on the amount of sequence
needed to assemble the dominant genome (Table 2).

Based on these observations, it seems that it may be too
early to conclude that fingerprinting is a powerful way of
comparing communities. We also note that fingerprinting is
difficult for viruses, since 65% of predicted genes from the
viral community sequencing projects have no homolog in the
databases [6]. However, similar techniques have been used to
compare the species, as opposed to their gene complements,
across different viral communities [54].

Phylogeny and Community Diversity

If complete gene sequences can be recovered from the
community, classic multiple sequence alignment (MSA) [55]
and phylogeny algorithms [56] can be applied. If only partial
genes are available, phylogenetic reconstruction is still
reasonably straightforward if there is already a database of
nearly complete sequences, as with 16S [57] or RecA (http://
www.tigr.org/_jeisen/RecA/RecA.html). The partial sequences
can then be aligned against the complete ones, and the
phylogenetic assignment performed by finding the closest
sequences in the database [58]. Even for such genes, however,
it is plausible to imagine a future in which the majority of
genes in the database are in fact partial environmental
sequences—at one point, for instance, the Sargasso Sea
dataset made up 5% of the total genes in GenBank and a
large number of these were unassembled reads. Alternatively,
metagenomics projects may discover a highly diverged group
of species that may not align well to existing sequences. In
these scenarios, it will be necessary to have good MSA and

phylogeny tools for partial sequences, even for these
‘‘universal’’ genes.
The case of viral phylogeny is more complex, firstly,

because it is not clear that all viruses are related by a tree,
and, secondly, because viral taxonomy has traditionally not
been based on molecular sequence data, though the Phage
Proteomic Tree [59] represents a step in the direction of
sequence-based taxonomy. Viral taxonomy is at a very early
stage of development, and there is no doubt that culture-
independent methods will play an important role in the
growth of the field.
Partial sequences are the crux of the phylogeny problem in

the context of metagenomics. We are particularly interested
in methods for such sequences because they will also be
applicable for low-coverage sequencing projects of
vertebrates and other species [46,60]. We are not aware of any
MSA tools and phylogeny programs that are able to cope with
short partial gene fragments, any two of which may fail to
have significant overlap. At the alignment stage, we require a
semi-global multiple alignment (i.e., terminal gaps are not
penalized). The most widely used alignment tools are based
on global or local alignments and do not correctly handle
partial sequences (an exception is MAP [61]). Since most MSA
tools are based on progressive alignment according to a guide
tree, it is also important to construct this tree based on
pairwise semi-global alignments and conserved terminal k-
mers, as opposed to the pairwise global or local alignments
currently used.
We studied 40 phosphoglycerate kinase genes from the soil

study and aligned them with MUSCLE [62]. Though not
optimized for partial sequences, MUSCLE did a reasonable
job, as ascertained by several criteria: the number of internal
gaps was small, sequences shorter than the read length had
either no beginning gaps or no ending gaps (since the gene
length is greater than the read length), and the total length
was comparable to related proteins.
Of the 780 pairs of sequences, 95 pairs had overlap of less

than 50 amino acids, and of these, 48 pairs had no overlap at
all. Thus, we have an extreme instance of the missing data
problem, which has been extensively discussed in the
phylogenetics literature [63,64]. However, this literature has
mostly studied consensus tree methods, and the effect of
adding incomplete taxa and/or characters on the accuracy of
traditional methods, like maximum likelihood. Relatively
little effort has gone into actually finding better methods for
tree reconstruction with this kind of data. Supertree methods
[65], which attempt to construct trees from multiple subtrees,
present one such alternative. One reason these methods have
not been widely used in the past in the context of molecular
data is the relative lack of maturity of the field as compared
with parsimony or likelihood methods. However, encouraging
new algorithmic results and software in this area [66–68]
should spur renewed work on these types of methods.
Supertree methods have also been criticized because
incomplete data matrices (e.g., from fossil data) usually do not
fit a random and independent missing data model. On the
other hand, shotgun sequencing does fit this model and thus
would seem an ideal setting for supertree methods. While the
data might be too limited to provide completely resolved
phylogenies, as previous discussed in the context of binning,
even crude trees may be sufficient for certain applications,
such as training HMMs.
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Finally, with regards to community diversity, one of the
advantages of the WGS approach is that it is less biased then
PCR, which is known to suffer from a host of problems [69].
Community modeling based on analysis of assembly data
within the Lander–Waterman model is beginning to show
that species abundance curves are not lognormal as
previously thought [41,70], so new methods that take into
account these naturally occurring distributions are needed.

Conclusion

The number of new community shotgun sequencing
projects continues to grow, promising to provide vast
quantities of sequence data for analysis. Samples are being
drawn from macroscopic environments such as the sea and
air, as well as from more contained communities such as the
human mouth (Table 3). Exciting advances in our
understanding of ecosystems, environments, and
communities will require creative solutions to numerous new
bioinformatics problems. We have briefly mentioned some of
these: assembly (can co-assembly techniques be used to
assemble polymorphic genomes and complex communities?),
binning (what is the best way to combine diverse sources of
information to bin scaffolds?), gene finding (how should gene
finding programs, which were designed for complete genes
and genomes, be adapted for low-coverage sequence?),
fingerprinting (which clustering techniques are best suited
for discovering novel pathways and functional groups that
allow communities to adapt to their environments?), and
MSA and phylogeny (how can we best construct trees and
alignments from fragmented data?).

Countless more challenges will likely emerge as WGS
sequencing approaches are used to tackle increasingly
complex communities. The reward for computational
biologists who work on these problems will be the satisfaction
of contributing to the grand enterprise of understanding the
total diversity of life on our planet. &
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