
6 Dynamic Programming

Algorithms

We introduced dynamic programming in chapter 2 with the Rocks prob-

lem. While the Rocks problem does not appear to be related to bioinfor-

matics, the algorithm that we described is a computational twin of a popu-

lar alignment algorithm for sequence comparison. Dynamic programming

provides a framework for understanding DNA sequence comparison algo-

rithms, many of which have been used by biologists to make important in-

ferences about gene function and evolutionary history. We will also apply

dynamic programming to gene finding and other bioinformatics problems.

6.1 The Power of DNA Sequence Comparison

After a new gene is found, biologists usually have no idea about its func-

tion. A common approach to inferring a newly sequenced gene’s function

is to find similarities with genes of known function. A striking example of

such a biological discovery made through a similarity search happened in

1984 when scientists used a simple computational technique to compare the

newly discovered cancer-causing ν-sis oncogene with all (at the time) known

genes. To their astonishment, the cancer-causing gene matched a normal

gene involved in growth and development called platelet-derived growth

factor (PDGF).1 After discovering this similarity, scientists became suspicious

that cancer might be caused by a normal growth gene being switched on at

the wrong time—in essence, a good gene doing the right thing at the wrong

time.

1. Oncogenes are genes in viruses that cause a cancer-like transformation of infected cells. Onco-
gene ν-sis in the simian sarcoma virus causes uncontrolled cell growth and leads to cancer in
monkeys. The seemingly unrelated growth factor PDGF is a protein that stimulates cell growth.
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Another example of a successful similarity search was the discovery of the

cystic fibrosis gene. Cystic fibrosis is a fatal disease associated with abnormal

secretions, and is diagnosed in children at a rate of 1 in 3900. A defective gene

causes the body to produce abnormally thick mucus that clogs the lungs and

leads to lifethreatening lung infections. More than 10 million Americans are

unknowing and symptomless carriers of the defective cystic fibrosis gene;

each time two carriers have a child, there is a 25% chance that the child will

have cystic fibrosis.

In 1989 the search for the cystic fibrosis gene was narrowed to a region

of 1 million nucleotides on the chromosome 7, but the exact location of the

gene remained unknown. When the area around the cystic fibrosis gene was

sequenced, biologists compared the region against a database of all known

genes, and discovered similarities between some segment within this region

and a gene that had already been discovered, and was known to code for

adenosine triphosphate (ATP) binding proteins.2 These proteins span the cell

membrane multiple times as part of the ion transport channel; this seemed

a plausible function for a cystic fibrosis gene, given the fact that the disease

involves sweat secretions with abnormally high sodium content. As a result,

the similarity analysis shed light on a damaged mechanism in faulty cystic

fibrosis genes.

Establishing a link between cancer-causing genes and normal growth genes

and elucidating the nature of cystic fibrosis were only the first success stories

in sequence comparison. Many applications of sequence comparison algo-

rithms quickly followed, and today bioinformatics approaches are among

the dominant techniques for the discovery of gene function.

This chapter describes algorithms that allow biologists to reveal the simi-

larity between different DNA sequences. However, we will first show how

dynamic programming can yield a faster algorithm to solve the Change prob-

lem.

6.2 The Change Problem Revisited

We introduced the Change problem in chapter 2 as the problem of changing

an amount of money M into the smallest number of coins from denomina-

tions c = (c1, c2, . . . , cd). We showed that the naive greedy solution used by

cashiers everywhere is not actually a correct solution to this problem, and

ended with a correct—though slow—brute force algorithm. We will con-

2. ATP binding proteins provide energy for many reactions in the cell.
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sider a slightly modified version of the Change problem, in which we do

not concern ourselves with the actual combination of coins that make up

the optimal change solution. Instead, we only calculate the smallest number

of coins needed (it is easy to modify this algorithm to also return the coin

combination that achieves that number).

Suppose you need to make change for 77 cents and the only coin denomi-

nations available are 1, 3, and 7 cents. The best combination for 77 cents will

be one of the following:

• the best combination for 77− 1 = 76 cents, plus a 1-cent coin;

• the best combination for 77− 3 = 74 cents, plus a 3-cent coin;

• the best combination for 77− 7 = 70 cents, plus a 7-cent coin.

For 77 cents, the best combination would be the smallest of the above three

choices. The same logic applies to 76 cents (best of 75, 73, or 69 cents), and

so on (fig. 6.1). If bestNumCoinsM is the smallest number of coins needed to

change M cents, then the following recurrence relation holds:

bestNumCoinsM = min







bestNumCoinsM−1 + 1

bestNumCoinsM−3 + 1

bestNumCoinsM−7 + 1

In the more general case of d denominations c = (c1, . . . , cd):

bestNumCoinsM = min



















bestNumCoinsM−c1 + 1

bestNumCoinsM−c2 + 1
...

bestNumCoinsM−cd
+ 1

This recurrence motivates the following algorithm:
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77 76 75 74 73 72 71 70 69 68 67

76 75 74 73 72 71 70 69 68 67

75 74 73 72 71 70 69 68 67

Figure 6.1 The relationships between optimal solutions in the Change problem. The
smallest number of coins for 77 cents depends on the smallest number of coins for 76,
74, and 70 cents; the smallest number of coins for 76 cents depends on the smallest
number of coins for 75, 73, and 69 cents, and so on.

RECURSIVECHANGE(M, c, d)

1 if M = 0

2 return 0

3 bestNumCoins←∞

4 for i← 1 to d

5 if M ≥ ci

6 numCoins← RECURSIVECHANGE(M − ci, c, d)

7 if numCoins + 1 < bestNumCoins

8 bestNumCoins← numCoins + 1

9 return bestNumCoins

The sequence of calls that RECURSIVECHANGE makes has a feature in com-

mon with the sequence of calls made by RECURSIVEFIBONACCI, namely, that

RECURSIVECHANGE recalculates the optimal coin combination for a given

amount of money repeatedly. For example, the optimal coin combination

for 70 cents is recomputed repeatedly nine times over and over as (77 − 7),

(77 − 3 − 3 − 1), (77 − 3 − 1 − 3), (77 − 1 − 3 − 3), (77 − 3 − 1 − 1 − 1 − 1),

(77 − 1 − 3 − 1 − 1 − 1), (77 − 1 − 1 − 3 − 1 − 1), (77 − 1 − 1 − 1 − 3 − 1),

(77 − 1 − 1 − 1 − 1 − 3), and (77 − 1 − 1 − 1 − 1 − 1 − 1 − 1). The optimal
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coin combination for 20 cents will be recomputed billions of times rendering

RECURSIVECHANGE impractical.

To improve RECURSIVECHANGE, we can use the same strategy as we did

for the Fibonacci problem—all we really need to do is use the fact that the

solution for M relies on solutions for M − c1, M − c2, and so on, and then

reverse the order in which we solve the problem. This allows us to lever-

age previously computed solutions to form solutions to larger problems and

avoid all this recomputation.

Instead of trying to find the minimum number of coins to change M cents,

we attempt the superficially harder task of doing this for each amount of

money, m, from 0 to M . This appears to require more work, but in fact, it

simplifies matters. The following algorithm with running time O(Md) cal-

culates bestNumCoinsm for increasing values of m. This works because the

best number of coins for some value m depends only on values less than m.

DPCHANGE(M, c, d)

1 bestNumCoins0 ← 0

2 for m← 1 to M

3 bestNumCoinsm ←∞

4 for i← 1 to d

5 if m ≥ ci

6 if bestNumCoinsm−ci
+ 1 < bestNumCoinsm

7 bestNumCoinsm ← bestNumCoinsm−ci
+ 1

8 return bestNumCoinsM

The key difference between RECURSIVECHANGE and DPCHANGE is that

the first makes d recursive calls to compute the best change for M (and each

of these calls requires a lot of work!), while the second analyzes the d already

precomputed values to almost instantly compute the new one. As surprising

as it may sound, simply reversing the order of computations in figure 6.1

makes a dramatic difference in efficiency (fig. 6.2).

We stress again the difference between the complexity of a problem and

the complexity of an algorithm. In particular, we initially showed an O(Md)

algorithm to solve the Change problem, and there did not appear to be any

easy way to remedy this situation. Yet the DPCHANGE algorithm provides

a simple O(Md) solution. Conversely, a minor modification of the Change

problem renders the problem very difficult. Suppose you had a limited num-

ber of each denomination and needed to change M cents using no more than

the provided supply of each coin. Since you have fewer possible choices in
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Figure 6.2 The solution for 9 cents (bestNumCoins9) depends on 8 cents, 6
cents and 2 cent, but the smallest number of coins can be obtained by computing
bestNumCoinsm for 0 ≤ m ≤ 9.

this new problem, it would seem to require even less time than the original

Change problem, and that a minor modification to DPCHANGE would work.

However, this is not the case and this problem turns out to be very difficult.
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6.3 The Manhattan Tourist Problem

We will further illustrate dynamic programming with a surprisingly useful

toy problem, called the Manhattan Tourist problem, and then build on this

intuition to describe DNA sequence alignment.

Imagine a sightseeing tour in the borough of Manhattan in New York City,

where a group of tourists are determined to walk from the corner of 59th

Street and 8th Avenue to the Chrysler Building at 42nd Street and Lexing-

ton Avenue. There are many attractions along the way, but assume for the

moment that the tourists want to see as many attractions as possible. The

tourists are allowed to move either to the south or to the east, but even so,

they can choose from many different paths (exactly how many is left as a

problem at the end of the chapter). The upper path in figure 6.3 will take

the tourists to the Museum of Modern Art, but they will have to miss Times

Square; the bottom path will allow the tourists to see Times Square, but they

will have to miss the Museum of Modern Art.

The map above can also be represented as a gridlike structure (figure 6.4)

with the numbers next to each line (called weights) showing the number of

attractions on every block. The tourists must decide among the many possi-

ble paths between the northwesternmost point (called the source vertex) and

the southeasternmost point (called the sink vertex). The weight of a path from

the source to the sink is simply the sum of weights of its edges, or the overall

number of attractions. We will refer to this kind of construct as a graph, the

intersections of streets we will call vertices, and the streets themselves will

be edges and have a weight associated with them. We assume that horizontal

edges in the graph are oriented to the east like→while vertical edges are ori-

ented to the south like ↓. A path is a continuous sequence of edges, and the

length of a path is the sum of the edge weights in the path.3 A more detailed

discussion of graphs can be found in chapter 8.

Although the upper path in figure 6.3 is better than the bottom one, in the

sense that the tourists will see more attractions, it is not immediately clear if

there is an even better path in the grid. The Manhattan Tourist problem is to

find the path with the maximum number of attractions,4 that is, a longest path

3. We emphasize that the length of paths in the graph represent the overall number of attractions
on this path and has nothing to do with the real length of the path (in miles), that is, the distance
the tourists travel.
4. There are many interesting museums and architectural landmarks in Manhattan. However,
it is impossible to please everyone, so one can change the relative importance of the types of
attractions by modulating the weights on the edges in the graph. This flexibility in assigning
weights will become important when we discuss scoring matrices for sequence comparison.
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(a path of maximum overall weight) in the grid.

Manhattan Tourist Problem:

Find a longest path in a weighted grid.

Input: A weighted grid G with two distinguished vertices:

a source and a sink.

Output: A longest path in G from source to sink.

Note that, since the tourists only move south and east, any grid positions

west or north of the source are unusable. Similarly, any grid positions south

or east of the sink are unusable, so we can simply say that the source vertex

is at (0, 0) and that the sink vertex at (n, m) defines the southeasternmost

corner of the grid. In figure 6.4 n = m = 4, but n does not always have

to equal m. We will use the grid shown in figure 6.4, rather than the one

corresponding to the map of Manhattan in figure 6.3 so that you can see a

nontrivial example of this problem.

The brute force approach to the Manhattan Tourist problem is to search

among all paths in the grid for the longest path, but this is not an option

for even a moderately large grid. Inspired by the previous chapter you may

be tempted to use a greedy strategy. For example, a sensible greedy strat-

egy would be to choose between two possible directions (south or east) by

comparing how many attractions tourists would see if they moved one block

south instead of moving one block east. This greedy strategy may provide re-

warding sightseeing experience in the beginning but, a few blocks later, may

bring you to an area of Manhattan you really do not want to be in. In fact,

no known greedy strategy for the Manhattan Tourist problem provides an

optimal solution to the problem. Had we followed the (obvious) greedy al-

gorithm, we would have chosen the following path, corresponding to twenty

three attractions.5

5. We will show that the optimal number is, in fact, thirty-four.
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Figure 6.3 A city somewhat like Manhattan, laid out on a grid with one-way streets.
You may travel only to the east or to the south, and you are currently at the north-
westernmost point (source) and need to travel to the southeasternmost point (sink).
Your goal is to visit as many attractions as possible.
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Figure 6.4 Manhattan represented as a graph with weighted edges.
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Instead of solving the Manhattan Tourist problem directly, that is, finding

the longest path from source (0, 0) to sink (n, m), we solve a more general

problem: find the longest path from source to an arbitrary vertex (i, j) with

0 ≤ i ≤ n, 0 ≤ j ≤ m. We will denote the length of such a best path as si,j ,

noticing that sn,m is the weight of the path that represents the solution to the
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Manhattan Tourist problem. If we only care about the longest path between

(0, 0) and (n, m)—the Manhattan Tourist problem—then we have to answer

one question, namely, what is the best way to get from source to sink. If we

solve the general problem, then we have to answer n×m questions: what is

the best way to get from source to anywhere. At first glance it looks like we

have just created n ×m different problems (computing (i, j) with 0 ≤ i ≤ n

and 0 ≤ j ≤ m) instead of a single one (computing sn,m), but the fact that

solving the more general problem is as easy as solving the Manhattan Tourist

problem is the basis of dynamic programming. Note that DPCHANGE also

generalized the problems that it solves by finding the optimal number of

coins for all values less than or equal to M .

Finding s0,j (for 0 ≤ j ≤ m) is not hard, since in this case the tourists do

not have any flexibility in their choice of path. By moving strictly to the east,

the weight of the path s0,j is the sum of weights of the first j city blocks.

Similarly, si,0 is also easy to compute for 0 ≤ i ≤ n, since the tourists move

only to the south.
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Now that we have figured out how to compute s0,1 and s1,0, we can com-

pute s1,1. The tourists can arrive at (1, 1) in only two ways: either by trav-

eling south from (0, 1) or east from (1, 0). The weight of each of these paths

is

• s0,1 + weight of the edge (block) between (0,1) and (1,1);
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• s1,0 + weight of the edge (block) between (1,0) and (1,1).

Since the goal is to find the longest path to, in this case, (1, 1), we choose the

larger of the above two quantities: 3 + 0 and 1 + 3. Note that since there are

no other ways to get to grid position (1, 1), we have found the longest path

from (0, 0) to (1, 1).

3 2 4 0

3 2 4 2

0 7 3 4

3 3 0 2

1 3 2 2

1

4

4

5

0

6

4

6

2

5

5

8

4

2

2

5

3

1

1

3

0

4

3 5 9 9

1

5

9

14

We have just found s1,1. Similar logic applies to s2,1, and then to s3,1, and so

on; once we have calculated si,0 for all i, we can calculate si,1 for all i.
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Once we have calculated si,1 for all i, we can use the same idea to calculate

si,2 for all i, and so on. For example, we can calculate s1,2 as follows.
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s1,2 = max

{

s1,1 + weight of the edge between (1,1) and (1,2)

s0,2 + weight of the edge between (0,2) and (1,2)
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In general, having the entire column s∗,j allows us to compute the next whole

column s∗,j+1. The observation that the only way to get to the intersection at

(i, j) is either by moving south from intersection (i− 1, j) or by moving east

from the intersection (i, j − 1) leads to the following recurrence:

si,j = max

{

si−1,j + weight of the edge between (i− 1, j) and (i, j)

si,j−1 + weight of the edge between (i, j − 1) and (i, j)
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This recurrence allows us to compute every score si,j in a single sweep of

the grid. The algorithm MANHATTANTOURIST implements this procedure.

Here,
↓
w is a two-dimensional array representing the weights of the grid’s

edges that run north to south, and
→
w is a two-dimensional array representing

the weights of the grid’s edges that run west to east. That is,
↓
wi,j is the weight

of the edge between (i, j − 1) and (i, j); and
→
wi,j is the weight of the edge

between (i, j − 1) and (i, j).

MANHATTANTOURIST(
↓
w,

→
w, n, m)

1 s0,0 ← 0

2 for i← 1 to n

3 si,0 ← si−1,0+
↓
wi,0

4 for j ← 1 to m

5 s0,j ← s0,j−1+
→
w0,j

6 for i← 1 to n

7 for j ← 1 to m

8 si,j ← max

{

si−1,j+
↓
wi,j

si,j−1+
→
wi,j

9 return sn,m

Lines 1 through 5 set up the initial conditions on the matrix s, and line 8 cor-

responds to the recurrence that allows us to fill in later table entries based on

earlier ones. Most of the dynamic programming algorithms we will develop

in the context of DNA sequence comparison will look just like MANHAT-

TANTOURIST with only minor changes. We will generally just arrive at a

recurrence like line 8 and call it an algorithm, with the understanding that

the actual implementation will be similar to MANHATTANTOURIST.6

Many problems in bioinformatics can be solved efficiently by the applica-

tion of the dynamic programming technique, once they are cast as traveling

in a Manhattan-like grid. For example, development of new sequence com-

parison algorithms often amounts to building an appropriate “Manhattan”

that adequately models the specifics of a particular biological problem, and

by defining the block weights that reflect the costs of mutations from one

DNA sequence to another.

6. MANHATTANTOURIST computes the length of the longest path in the grid, but does not give
the path itself. In section 6.5 we will describe a minor modification to the algorithm that returns
not only the optimal length, but also the optimal path.
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Figure 6.5 A city somewhat more like Manhattan than figure 6.4 with the compli-
cating issue of a street that runs diagonally across the grid. Broadway cuts across
several blocks. In the case of the Manhattan Tourist problem, it changes the optimal
path (the optimal path in this new city has six attractions instead of five).
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Unfortunately, Manhattan is not a perfectly regular grid. Broadway cuts

across the borough (figure 6.5). We would like to solve a generalization of

the Manhattan Tourist problem for the case in which the street map is not

a regular rectangular grid. In this case, one can model any city map as a

graph with vertices corresponding to the intersections of streets, and edges

corresponding to the intervals of streets between the intersections. For the

sake of simplicity we assume that the city blocks correspond to directed edges,

so that the tourist can move only in the direction of the edge and that the

resulting graph has no directed cycles.7 Such graphs are called directed acyclic

graphs, or DAGs. We assume that every edge has an associated weight (e.g.,

the number of attractions) and represent a graph G as a pair of two sets, V

for vertices and E for edges: G = (V, E). We number vertices from 1 to

|V | with a single integer, rather than a row-column pair as in the Manhattan

problem. This does not change the generic dynamic programming algorithm

other than in notation, but it allows us to represent imperfect grids. An edge

from E can be specified in terms of its origin vertex u and its destination

vertex v as (u, v). The following problem is simply a generalization of the

Manhattan Tourist problem that is able to deal with arbitrary DAGs rather

than with perfect grids.

Longest Path in a DAG Problem:

Find a longest path between two vertices in a weighted DAG.

Input: A weighted DAG G with source and sink vertices.

Output: A longest path in G from source to sink.

Not surprisingly, the Longest Path in a DAG problem can also be solved

by dynamic programming. At every vertex, there may be multiple edges

that “flow in” and multiple edges that “flow out.” In the city analogy, any

intersection may have multiple one-way streets leading in, and some other

number of one-way streets exiting. We will call the number of edges entering

a vertex (i.e., the number of inbound streets) the indegree of the vertex (i.e.,

intersection), and the number of edges leaving a vertex (i.e., the number of

outbound streets) the outdegree of the vertex.

In the nicely regular case of the Manhattan problem, most vertices had

7. A directed cycle is a path from a vertex back to itself that respects the directions of edges. If
the resulting graph contained a cycle, a tourist could start walking along this cycle revisiting the
same attractions many times. In this case there is no “best” solution since a tourist may increase
the number of visited attractions indefinitely.
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u1 u2

u3 v w2

w1

Figure 6.6 A graph with six vertices. The vertex v has indegree 3 and outdegree 2.
The vertices u1, u2 and u3 are all predecessors of v, and w1 and w2 are successors of
v.

indegree 2 and outdegree 2, except for the vertices along the boundaries of

the grid. In the more general DAG problem, a vertex can have an arbitrary

indegree and outdegree. We will call u a predecessor to vertex v if (u, v) ∈ E—

in other words, a predecessor of a vertex is any vertex that can be reached by

traveling backwards along an inbound edge. Clearly, if v has indegree k, it

has k predecessors.

Suppose a vertex v has indegree 3, and the set of predecessors of v is

{u1, u2, u3} (figure 6.6). The longest path to v can be computed as follows:

sv = max







su1 + weight of edge from u1 to v

su2 + weight of edge from u2 to v

su3 + weight of edge from u3 to v

In general, one can imagine a rather hectic city plan, but the recurrence

relation remains simple, with the score sv of the vertex v defined as follows.

sv = max
u∈Predecessors(v)

(su + weight of edge from u to v)

Here, Predecessors(v) is the set of all vertices u such that u is a predecessor

of v. Since every edge participates in only a single recurrence, the running
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Figure 6.7 The “Dressing in the Morning problem” represented by a DAG. Some of
us have more trouble than others.

time of the algorithm is defined by the number of edges in the graph.8 The

one hitch to this plan for solving the Longest Path problem in a DAG is that

one must decide on the order in which to visit the vertices while computing

s. This ordering is important, since by the time vertex v is analyzed, the

values su for all its predecessors must have been computed. Three popular

strategies for exploring the perfect grid are displayed in figure 6.9, column by

column, row by row, and diagonal by diagonal. These exploration strategies

correspond to different topological orderings of the DAG corresponding to the

perfect grid. An ordering of vertices v1, . . . , vn of a DAG is called topological

if every edge (vi, vj) of the DAG connects a vertex with a smaller index to a

vertex with a larger index, that is, i < j. Figure 6.7 represents a DAG that

corresponds to a problem that we each face every morning. Every DAG has

a topological ordering (fig. 6.8); a problem at the end of this chapter asks you

to prove this fact.

8. A graph with vertex set V can have at most |V |2 edges, but graphs arising in sequence com-
parison are usually sparse, with many fewer edges.



6.3 The Manhattan Tourist Problem 165

Figure 6.8 Two different ways of getting dressed in the morning corresponding to
two different topological orderings of the graph in figure 6.7.
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Figure 6.9 Three different strategies for filling in a dynamic programming array.
The first fills in the array column by column: earlier columns are filled in before later
ones. The second fills in the array row by row. The third method fills array entries
along the diagonals and is useful in parallel computation.
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6.4 Edit Distance and Alignments

So far, we have been vague about what we mean by “sequence similarity”

or “distance” between DNA sequences. Hamming distance (introduced in

chapter 4), while important in computer science, is not typically used to com-

pare DNA or protein sequences. The Hamming distance calculation rigidly

assumes that the ith symbol of one sequence is already aligned against the ith

symbol of the other. However, it is often the case that the ith symbol in one

sequence corresponds to a symbol at a different—and unknown—position

in the other. For example, mutation in DNA is an evolutionary process:

DNA replication errors cause substitutions, insertions, and deletions of nu-

cleotides, leading to “edited” DNA texts. Since DNA sequences are subject

to insertions and deletions, biologists rarely have the luxury of knowing in

advance whether the ith symbol in one DNA sequence corresponds to the

ith symbol in the other.

As figure 6.10 (a) shows, while strings ATATATAT and TATATATA are very

different from the perspective of Hamming distance, they become very simi-

lar if one simply moves the second string over one place to align the (i+1)-st

letter in ATATATAT against the ith letter in TATATATA for 1 ≤ i ≤ 7. Strings

ATATATAT and TATAAT present another example with more subtle similarities.

Figure 6.10 (b) reveals these similarities by aligning position 2 in ATATATAT
against position 1 in TATAAT. Other pairs of aligned positions are 3 against

2, 4 against 3, 5 against 4, 7 against 5, and 8 against 6 (positions 1 and 6 in

ATATATAT remain unaligned).

In 1966, Vladimir Levenshtein introduced the notion of the edit distance

between two strings as the minimum number of editing operations needed

to transform one string into another, where the edit operations are insertion

of a symbol, deletion of a symbol, and substitution of one symbol for another.

For example, TGCATAT can be transformed into ATCCGAT with five editing

operations, shown in figure 6.11. This implies that the edit distance between

TGCATAT and ATCCGAT is at most 5. Actually, the edit distance between

them is 4 because you can transform one to the other with one move fewer,

as in figure 6.12.

Unlike Hamming distance, edit distance allows one to compare strings of

different lengths. Oddly, Levenshtein introduced the definition of edit dis-

tance but never described an algorithm for actually finding the edit distance

between two strings. This algorithm has been discovered and rediscovered

many times in applications ranging from automated speech recognition to,

obviously, molecular biology. Although the details of the algorithms are
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A T A T A T A T -
: : : : : : :

- T A T A T A T A

(a) Alignment of ATATATAT against
TATATATA.

A T A T A T A T
: : : : : :

- T A T A - A T

(b) Alignment of ATATATAT against
TATAAT.

Figure 6.10 Alignment of ATATATAT against TATATATA and of ATATATAT against
TATAAT.

TGCATAT

ATCCAT

TGCATA

TGCAT

ATGCAT

ATCCGAT

delete last T

delete last A

insert A at the front

substitute C for G in the third position

insert a G before the last A

Figure 6.11 Five edit operations can take TGCATAT into ATCCGAT.

slightly different across the various applications, they are all based on dy-

namic programming.

The alignment of the strings v (of n characters) and w (of m characters,

with m not necessarily the same as n) is a two-row matrix such that the first

row contains the characters of v in order while the second row contains the

characters of w in order, where spaces may be interspersed throughout the

strings in different places. As a result, the characters in each string appear

in order, though not necessarily adjacently. We also assume that no column
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TGCATAT

ATCCGAT

ATGCATAT

ATGCAAT

ATGCGAT

delete T in the sixth position

substitute G for A in the fifth position

substitute C for G in the third position

insert A at the front

Figure 6.12 Four edit operations can also take TGCATAT into ATCCGAT.

of the alignment matrix contains spaces in both rows, so that the alignment

may have at most n + m columns.

A T - G T T A T -
A T C G T - A - C

Columns that contain the same letter in both rows are called matches, while

columns containing different letters are called mismatches. The columns of

the alignment containing one space are called indels, with the columns con-

taining a space in the top row called insertions and the columns with a space

in the bottom row deletions. The alignment shown in figure 6.13 (top) has five

matches, zero mismatches, and four indels. The number of matches plus the

number of mismatches plus the number of indels is equal to the length of the

alignment matrix and must be smaller than n + m.

Each of the two rows in the alignment matrix is represented as a string

interspersed by space symbols “−”; for example AT−GTTAT− is a represen-

tation of the row corresponding to v = ATGTTAT, while ATCGT−A−C is a

representation of the row corresponding to w = ATCGTAC. Another way to

represent the row AT−GTTAT− is 1 2 2 3 4 5 6 7 7, which shows the number of

symbols of v present up to a given position. Similarly, ATCGT−A−C is rep-

resented as 1 2 3 4 5 5 6 6 7. When both rows of an alignment are represented

in this way (fig. 6.13, top), the resulting matrix is

(

0

0

)(

1

1

)(

2

2

)(

2

3

)(

3

4

)(

4

5

)(

5

5

)(

6

6

)(

7

6

)(

7

7

)

Each column in this matrix is a coordinate in a two-dimensional n×m grid;
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the entire alignment is simply a path

(0, 0)→ (1, 1)→ (2, 2)→ (2, 3)→ (3, 4)→ (4, 5)→ (5, 5)→ (6, 6)→ (7, 6)→ (7, 7)

from (0, 0) to (n, m) in that grid (again, see figure 6.13). This grid is similar

to the Manhattan grid that we introduced earlier, where each entry in the

grid looks like a city block. The main difference is that here we can move

along the diagonal. We can construct a graph, this time called the edit graph,

by introducing a vertex for every intersection of streets in the grid, shown in

figure 6.13. The edit graph will aid us in calculating the edit distance.

Every alignment corresponds to a path in the edit graph, and every path

in the edit graph corresponds to an alignment where every edge in the path

corresponds to one column in the alignment (fig. 6.13). Diagonal edges in the

path that end at vertex (i, j) in the graph correspond to the column

(

vi

wj

)

,

horizontal edges correspond to

(

−

wj

)

, and vertical edges correspond to

(

vi

−

)

. The alignment above can be drawn as follows.

(

0

0

)

A
(

1

1

)

A

T
(

2

2

)

T

−
(

2

3

)

G

G
(

3

4

)

C

T
(

4

5

)

T

T
(

5

5

)

−

A
(

6

6

)

A

T
(

7

6

)

−

−
(

7

7

)

C

Analyzing the merit of an alignment is equivalent to analyzing the merit

of the corresponding path in the edit graph. Given any two strings, there

are a large number of different alignment matrices and corresponding paths

in the edit graph. Some of these have a surplus of mismatches and indels

and a small number of matches, while others have many matches and few

indels and mismatches. To determine the relative merits of one alignment

over another, we rely on the notion of a scoring function, which takes as

input an alignment matrix (or, equivalently, a path in the edit graph) and

produces a score that determines the “goodness” of the alignment. There are

a variety of scoring functions that we could use, but we want one that gives

higher scores to alignments with more matches. The simplest functions score

a column as a positive number if both letters are the same, and as a negative

number if the two letters are different. The score for the whole alignment is

the sum of the individual column scores. This scoring scheme amounts to
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0 1 2 2 3 4 5 6 7 7

v = A T - G T T A T -
| | | | |

w = A T C G T - A - C
0 1 2 3 4 5 5 6 6 7

0

A

1

T

2

C

3

G

4

T

5

A

6

C

7

0

A
1

T
2

G
3

T
4

T
5

A
6

T
7

v

w

↘ ↘ → ↘ ↘ ↓ ↘ ↓ →
A T - G T T A T -
A T C G T - A - C

Figure 6.13 An alignment grid for v = ATGTTAT and w = ATCGTAC. Every align-
ment corresponds to a path in the alignment grid from (0, 0) to (n, m), and every path
from (0, 0) to (n, m) in the alignment grid corresponds to an alignment.
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assigning weights to the edges in the edit graph.

By choosing different scoring functions, we can solve different string com-

parison problems. If we choose the very simple scoring function of “+1 for

a match, 0 otherwise,” then the problem becomes that of finding the longest

common subsequence between two strings, which is discussed below. Be-

fore describing how to calculate Levenshtein’s edit distance, we develop the

Longest Common Subsequence problem as a warm-up.

6.5 Longest Common Subsequences

The simplest form of a sequence similarity analysis is the Longest Common

Subsequence (LCS) problem, where we eliminate the operation of substitu-

tion and allow only insertions and deletions. A subsequence of a string v

is simply an (ordered) sequence of characters (not necessarily consecutive)

from v. For example, if v = ATTGCTA, then AGCA and ATTA are subse-

quences of v whereas TGTT and TCG are not.9 A common subsequence of

two strings is a subsequence of both of them. Formally, we define the com-

mon subsequence of strings v = v1 . . . vn and w = w1 . . . wm as a sequence of

positions in v,

1 ≤ i1 < i2 < · · · < ik ≤ n

and a sequence of positions in w,

1 ≤ j1 < j2 < · · · < jk ≤ m

such that the symbols at the corresponding positions in v and w coincide:

vit
= wjt

for 1 ≤ t ≤ k.

For example, TCTA is a common to both ATCTGAT and TGCATA.

Although there are typically many common subsequences between two

strings v and w, some of which are longer than others, it is not immedi-

ately obvious how to find the longest one. If we let s(v,w) be the length

of the longest common subsequence of v and w, then the edit distance be-

tween v and w—under the assumption that only insertions and deletions

are allowed—is d(v,w) = n + m − 2s(v,w), and corresponds to the mini-

9. The difference between a subsequence and a substring is that a substring consists only of con-
secutive characters from v, while a subsequence may pick and choose characters from v as long
as their ordering is preserved.
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A T - C - T G A T
- T G C A T - A -

Alignment:
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V and W have a subsequence TCTA in common V can be transformed into W by deleting A,G,T and inserting G,A
Computing similarity s(V,W)=4 Computing distance d(V,W)=5
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0

Figure 6.14 Dynamic programming algorithm for computing the longest common
subsequence.

mum number of insertions and deletions needed to transform v into w. Fig-

ure 6.14 (bottom) presents an LCS of length 4 for the strings v = ATCTGAT
and w = TGCATA and a shortest sequence of two insertions and three dele-

tions transforming v into w (shown by “-” in the figure). The LCS problem

follows.

Longest Common Subsequence Problem:

Find the longest subsequence common to two strings.

Input: Two strings, v and w.

Output: The longest common subsequence of v and w.

What do the LCS problem and the Manhattan Tourist problem have in

common? Every common subsequence corresponds to an alignment with no
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ε

A

T

C

T

G

A

T

ε T G C A T A

+1

+1 +1

+1 +1

+1

+1 +1

+1

+1 +1

+1 +1

Figure 6.15 An LCS edit graph.

mismatches. This can be obtained simply by removing all diagonal edges

from the edit graph whose characters do not match, thus transforming it into

a graph like that shown in figure 6.15. We further illustrate the relationship

between the Manhattan Tourist problem and the LCS Problem by showing

that these two problems lead to very similar recurrences.

Define si,j to be the length of an LCS between v1 . . . vi, the i-prefix of v

and w1 . . . wj , the j-prefix of w. Clearly, si,0 = s0,j = 0 for all 1 ≤ i ≤ n and
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1 ≤ j ≤ m. One can see that si,j satisfies the following recurrence:

si,j = max







si−1,j

si,j−1

si−1,j−1 + 1, if vi = wj

The first term corresponds to the case when vi is not present in the LCS

of the i-prefix of v and j-prefix of w (this is a deletion of vi); the second

term corresponds to the case when wj is not present in this LCS (this is an

insertion of wj); and the third term corresponds to the case when both vi and

wj are present in the LCS (vi matches wj). Note that one can “rewrite” these

recurrences by adding some zeros here and there as

si,j = max







si−1,j + 0

si,j−1 + 0

si−1,j−1 + 1, if vi = wj

This recurrence for the LCS computation is like the recurrence given at the

end of the section 6.3, if we were to build a particularly gnarly version of

Manhattan and gave horizontal and vertical edges weights of 0, and set the

weights of diagonal (matching) edges equal to +1 as in figure 6.15.

In the following, we use s to represent our dynamic programming table,

the data structure that we use to fill in the dynamic programming recur-

rence. The length of an LCS between v and w can be read from the element

(n, m) of the dynamic programming table, but to reconstruct the LCS from

the dynamic programming table, one must keep some additional informa-

tion about which of the three quantities, si−1,j , si,j−1, or si−1,j−1 + 1, corre-

sponds to the maximum in the recurrence for si,j . The following algorithm

achieves this goal by introducing backtracking pointers that take one of the

three values←, ↑, or↖. These specify which of the above three cases holds,

and are stored in a two-dimensional array b (see figure 6.14).
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LCS(v,w)

1 for i← 0 to n

2 si,0 ← 0

3 for j ← 1 to m

4 s0,j ← 0

5 for i← 1 to n

6 for j ← 1 to m

7 si,j ← max







si−1,j

si,j−1

si−1,j−1 + 1, if vi = wj

8 bi,j ←







“ ↑′′ if si,j = si−1,j

“←′′ if si,j = si,j−1

“↖′′, if si,j = si−1,j−1 + 1
9 return (sn,m,b)

The following recursive program prints out the longest common subse-

quence using the information stored in b. The initial invocation that prints

the solution to the problem is PRINTLCS(b,v, n, m).

PRINTLCS(b,v, i, j)

1 if i = 0 or j = 0

2 return

3 if bi,j = “↖′′

4 PRINTLCS(b,v, i− 1, j − 1)

5 print vi

6 else

7 if bi,j = “ ↑′′

8 PRINTLCS(b,v, i− 1, j)

9 else

10 PRINTLCS(b,v, i, j − 1)

The dynamic programming table in figure 6.14 (left) presents the compu-

tation of the similarity score s(v,w) between v and w, while the table on

the right presents the computation of the edit distance between v and w

under the assumption that insertions and deletions are the only allowed op-

erations. The edit distance d(v,w) is computed according to the initial con-

ditions di,0 = i, d0,j = j for all 1 ≤ i ≤ n and 1 ≤ j ≤ m and the following

recurrence:
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di,j = min







di−1,j + 1

di,j−1 + 1

di−1,j−1, if vi = wj

6.6 Global Sequence Alignment

The LCS problem corresponds to a rather restrictive scoring that awards 1 for

matches and does not penalize indels. To generalize scoring, we extend the k-

letter alphabet A to include the gap character “−”, and consider an arbitrary

(k+1)× (k+1) scoring matrix δ, where k is typically 4 or 20 depending on the

type of sequences (DNA or protein) one is analyzing. The score of the column
(

x
y

)

in the alignment is δ(x, y) and the alignment score is defined as the sum

of the scores of the columns. In this way we can take into account scoring of

mismatches and indels in the alignment. Rather than choosing a particular

scoring matrix and then resolving a restated alignment problem, we will pose

a general Global Alignment problem that takes the scoring matrix as input.

Global Alignment Problem:

Find the best alignment between two strings under a given scoring

matrix.

Input: Strings v, w and a scoring matrix δ.

Output: An alignment of v and w whose score (as defined

by the matrix δ) is maximal among all possible alignments

of v and w.

The corresponding recurrence for the score si,j of an optimal alignment

between the i-prefix of v and j-prefix of w is as follows:

si,j = max







si−1,j + δ(vi,−)

si,j−1 + δ(−, wj)

si−1,j−1 + δ(vi, wj)

When mismatches are penalized by some constant −µ, indels are penal-

ized by some other constant −σ, and matches are rewarded with +1, the

resulting score is

#matches− µ ·#mismatches− σ ·#indels
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The corresponding recurrence can be rewritten as

si,j = max















si−1,j − σ

si,j−1 − σ

si−1,j−1 − µ, if vi 6= wj

si−1,j−1 + 1, if vi = wj

We can again store similar “backtracking pointer” information while cal-

culating the dynamic programming table, and from this reconstruct the align-

ment. We remark that the LCS problem is the Global Alignment problem

with the parameters µ = 0, σ = 0 (or, equivalently, µ =∞, σ = 0).

6.7 Scoring Alignments

While the scoring matrices for DNA sequence comparison are usually de-

fined only by the parameters µ (mismatch penalty) and σ (indel penalty),

scoring matrices for sequences in the amino acid alphabet of proteins are

quite involved. The common matrices for protein sequence comparison,

point accepted mutations (PAM) and block substitution (BLOSUM), reflect the

frequency with which amino acid x replaces amino acid y in evolutionarily

related sequences.

Random mutations of the nucleotide sequence within a gene may change

the amino acid sequence of the corresponding protein. Some of these muta-

tions do not drastically alter the protein’s structure, but others do and impair

the protein’s ability to function. While the former mutations usually do not

affect the fitness of the organism, the latter often do. Therefore some amino

acid substitutions are commonly found throughout the process of molecu-

lar evolution and others are rare: Asn, Asp, Glu, and Ser are the most

“mutable” amino acids while Cys and Trp are the least mutable. For exam-

ple, the probability that Ser mutates into Phe is roughly three times greater

than the probability that Trp mutates into Phe. Knowledge of the types

of changes that are most and least common in molecular evolution allows

biologists to construct the amino acid scoring matrices and to produce bio-

logically adequate sequence alignments. As a result, in contrast to nucleotide

sequence comparison, the optimal alignments of amino acid sequences may

have very few matches (if any) but still represent biologically adequate align-

ments. The entry of amino acid scoring matrix δ(i, j) usually reflects how

often the amino acid i substitutes the amino acid j in the alignments of re-

lated protein sequences. If one is provided with a large set of alignments of
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related sequences, then computing δ(i, j) simply amounts to counting how

many times the amino acid i is aligned with amino acid j. A “minor” compli-

cation is that to build this set of biologically adequate alignments one needs

to know the scoring matrix! Fortunately, in many cases the alignment of

very similar sequences is so obvious that it can be constructed even without

a scoring matrix, thus resolving this predicament. For example, if proteins

are 90% identical, even a naive scoring matrix (e.g., a matrix that gives pre-

mium +1 for matches and penalties−1 for mismatches and indels) would do

the job. After these “obvious” alignments are constructed they can be used

to compute a scoring matrix δ that can be used iteratively to construct less

obvious alignments.

This simplified description hides subtle details that are important in the

construction of scoring matrices. The probability of Ser mutating into Phe
in proteins that diverged 15 million years ago (e.g., related proteins in mouse

and rat) is smaller than the probability of the Ser → Phe mutation in pro-

teins that diverged 80 million years ago (e.g., related proteins in mouse and

human). This observation implies that the best scoring matrices to compare

two proteins depends on how similar these organisms are.

Biologists get around this problem by first analyzing extremely similar

proteins, for example, proteins that have, on average, only one mutation per

100 amino acids. Many proteins in human and chimpanzee fulfill this re-

quirement. Such sequences are defined as being one PAM unit diverged and to

a first approximation one can think of a PAM unit as the amount of time in

which an “average” protein mutates 1% of its amino acids. The PAM 1 scor-

ing matrix is defined from many alignments of extremely similar proteins as

follows.

Given a set of base alignments, define f(i, j) as the total number of times

amino acids i and j are aligned against each other, divided by the total num-

ber of aligned positions. We also define g(i, j) as f(i,j)
f(i) , where f(i) is the

frequency of amino acid i in all proteins from the data set. g(i, j) defines

the probability that an amino acid i mutates into amino acid j within 1 PAM

unit. The (i, j) entry of the PAM 1 matrix is defined as δ(i, j) = log f(i,j)
f(i)·f(j) =

log g(i,j)
f(j) (f(i) · f(j) stands for the frequency of aligning amino acid i against

amino acid j that one expects simply by chance). The PAM n matrix can

be defined as the result of applying the PAM 1 matrix n times. If g is the

20 × 20 matrix of frequencies g(i, j), then gn (multiplying this matrix by it-

self n times) gives the probability that amino acid i mutates into amino acid

j during n PAM units. The (i, j) entry of the PAM n matrix is defined as
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log
gn

i,j

f(j) .

For large n, the resulting PAM matrices often allow one to find related

proteins even when there are practically no matches in the alignment. In this

case, the underlying nucleotide sequences are so diverged that their compar-

ison usually fails to find any statistically significant similarities. For example,

the similarity between the cancer-causing ν-sis oncogene and the growth fac-

tor PDGF would probably have remained undetected had Russell Doolittle

and colleagues not transformed the nucleotide sequences into amino acid

sequences prior to performing the comparison.

6.8 Local Sequence Alignment

The Global Alignment problem seeks similarities between two entire strings.

This is useful when the similarity between the strings extends over their en-

tire length, for example, in protein sequences from the same protein family.

These protein sequences are often very conserved and have almost the same

length in organisms ranging from fruit flies to humans. However, in many

biological applications, the score of an alignment between two substrings of

v and w might actually be larger than the score of an alignment between the

entireties of v and w.

For example, homeobox genes, which regulate embryonic development, are

present in a large variety of species. Although homeobox genes are very dif-

ferent in different species, one region in each gene—called the homeodomain—

is highly conserved. The question arises how to find this conserved area and

ignore the areas that show little similarity. In 1981 Temple Smith and Michael

Waterman proposed a clever modification of the global sequence alignment

dynamic programming algorithm that solves the Local Alignment problem.

Figure 6.16 presents the comparison of two hypothetical genes v and w of

the same length with a conserved domain present at the beginning of v and

at the end of w. For simplicity, we will assume that the conserved domains

in these two genes are identical and cover one third of the entire length, n, of

these genes. In this case, the path from source to sink capturing the similarity

between the homeodomains will include approximately 2
3n horizontal edges,

1
3n diagonal match edges (corresponding to homeodomains), and 2

3n vertical

edges. Therefore, the score of this path is

−
2

3
nσ +

1

3
n−

2

3
nσ = n

(

1

3
−

4

3
σ
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