
CMSC 423: Solutions to Homework 1

Solution 1:

(a) The dynamic programming table for the problem is shown below. Optimal alignment is

TACGGGTAT
GGAC G TAGG

and its cost is 1.

T A C G G G T A T
0 1 2 3 4 5 6 7 8 9

G 1 1 2 3 2 3 4 5 6 7
G 2 2 2 3 2 1 2 3 4 5
A 3 3 1 2 3 2 2 3 2 3
C 4 4 2 0 1 2 3 3 3 3
G 5 5 3 1 -1 0 1 2 3 4
T 6 4 4 2 0 0 1 0 1 2
A 7 5 3 3 1 1 1 1 -1 0
C 8 6 4 2 2 2 2 2 0 0
G 9 9 7 5 3 1 1 2 1 1

Arrows are:

T A C G G G T A T

G ↖
G ↑
A ↖
C ↖ →
G ↖ →
T ↖
A ↖
C ↖
G ↑

(b) The dynamic programming table for the problem is shown below. Optimal local alignment is

TACG
TAGG

and its cost is −4.

1

T A C G G G T A T
0 0 0 0 0 0 0 0 0 0

G 0 0 0 -1 -1 -1 -1 0 0 0
G 0 0 0 0 -1 -2 -2 -1 0 0
A 0 0 -1 0 0 -1 -1 -1 -2 -1
C 0 0 0 -2 -1 0 0 0 -1 -1
G 0 0 0 0 -3 -2 -1 0 0 0
T 0 -1 0 0 -2 -2 -1 -2 -1 -1
A 0 0 -2 -1 -1 -1 -1 -1 -3 -2
C 0 0 0 -3 -2 -1 0 0 -2 -2
G 0 0 0 -2 -4 -3 -2 -1 -1 -1

Some of the arrows are:

T A C G G G T A T

G
G
A
C
G
T ↖
A ↖
C ↖
G ↖

(c) There will be 3 dynamic programming tables such as M,X, Y . The optimal alignment will
be

TACGGGTAT
GGACGTAGG

and its cost is 7.

Since gapstart is 20 and it is a lot larger than gapextend and other costs, putting even 1 gap
will be costlier than aligning both strings directly. Therefore, optimal alignment is as shown
above can be found without even filling the tables in this question. However, the question
asks for the tables to be filled in:

M matrix =
* T A C G G G T A T

* 0 -inf -inf -inf -inf -inf -inf -inf -inf -inf
G -inf -1 -22 -23 -22 -23 -24 -27 -28 -29
G -inf -22 -2 -23 -22 -21 -22 -25 -28 -29
A -inf -23 -21 -3 -24 -23 -22 -23 -24 -29
C -inf -24 -24 -20 -4 -25 -24 -23 -24 -25
G -inf -25 -25 -25 -19 -3 -24 -25 -24 -25

2

T -inf -24 -26 -26 -26 -20 -4 -23 -26 -23
A -inf -27 -23 -27 -27 -27 -21 -5 -22 -27
C -inf -28 -28 -22 -28 -28 -26 -22 -6 -23
G -inf -29 -29 -29 -21 -27 -25 -27 -23 -7

X matrix =
* T A C G G G T A T

* 0 -inf -inf -inf -inf -inf -inf -inf -inf -inf
G -21 -42 -43 -44 -45 -46 -47 -48 -49 -50
G -22 -22 -43 -44 -43 -44 -45 -48 -49 -50
A -23 -23 -23 -44 -43 -42 -43 -46 -49 -50
C -24 -24 -24 -24 -44 -43 -43 -44 -45 -50
G -25 -25 -25 -25 -25 -44 -44 -44 -45 -46
T -26 -26 -26 -26 -26 -24 -45 -45 -45 -46
A -27 -27 -27 -27 -27 -25 -25 -44 -46 -44
C -28 -28 -28 -28 -28 -26 -26 -26 -43 -45
G -29 -29 -29 -29 -29 -27 -27 -27 -27 -44

Y matrix =
* T A C G G G T A T

* 0 -21 -22 -23 -24 -25 -26 -27 -28 -29
G -inf -42 -22 -23 -24 -25 -26 -27 -28 -29
G -inf -43 -43 -23 -24 -25 -26 -27 -28 -29
A -inf -44 -44 -42 -24 -25 -26 -27 -28 -29
C -inf -45 -45 -45 -41 -25 -26 -27 -28 -29
G -inf -46 -46 -46 -46 -40 -24 -25 -26 -27
T -inf -47 -45 -46 -47 -47 -41 -25 -26 -27
A -inf -48 -48 -44 -45 -46 -46 -42 -26 -27
C -inf -49 -49 -49 -43 -44 -45 -46 -43 -27
G -inf -50 -50 -50 -50 -42 -43 -44 -45 -44

Solution 2:
The most direct route to a solution is to write a dynamic programming recurrence for the

problem. Let SCS(i, j) be the length of a shortest common supersequence of X[1..i] and Y [1..j]. It
can be computed as below:

SCS(i, j) = min

j if i = 0
i if j = 0
SCS(i− 1, j − 1) + 1 i, j > 0 and xi = yj

SCS(i, j − 1) + 1 i, j > 0 and xi 6= yj

SCS(i− 1, j) + 1 i, j > 0 and xi 6= yj

(1)

We fill in a table where entry (i, j) has the value of SCS(i, j) by starting from small values of
i and j and working towards larger values. If we trace backwards vertically or horizontally, we
add the character in the way we moved to our shortest common supersequence (scs). If we move
diagonally, the characters must be the same and we add one of them to scs.

3

Alternative solution: You can notice that the shortest common supersequence between x and
y can be found from an alignment between x and y with a scoring function that rewards matches
and does not allow mismatches. E.g.: match = −1, mismatch = ∞, gap = 0. This will find the
alignment that has as many matches as possible and no mismatches. The characters in the columns
of the alignment will be the shortest common supersequence.

Solution 3:
The main idea is that whole matrix won’t be necessary in this case. Only the squares with

distance less than or equal to k from the diagonal will be relevant (either above or below the
diagonal) in addition to diagonal itself. Thus we’re only filling the (2k + 1)n squares. The figure
above shows this .

We then run the dynamic programming algorithm by considering only these squares and not
filling in the others.

Note that the problem was phrased as the user promising that the optimal had fewer than k
gap pairs. A solution that stays entirely within the band of width k around the diagonal can still
have more than k gaps. Since we were promised this won’t happen in our case, we are sure to find
an optimal solution with < k gap pairs.

Solution 4:
Here is implementation of the program in Python:

PROFIT = {(’C’,’c’): 75, (’C’,’w’): 50, (’W’, ’c’): 50, (’W’, ’w’): 100}
ADCOST = 10
SWITCHCOST = 25

def bestschedule(weather):
print ’ADCOST=%d SWITCHCOST=%d’ % (ADCOST, SWITCHCOST)
D[(A, i)] = the best profit for days 0...i assuming the
ad type A was run on day i.
D = {}

A[(a, i)] = the arrow to the i-1 day
A = {}

4

for day 0, this is the profit:
D[(’C’, 0)] = PROFIT[(’C’, weather[0])] - ADCOST
D[(’W’, 0)] = PROFIT[(’W’, weather[0])] - ADCOST

for i in xrange(1,len(weather)):
D[(’C’, i)] = max(

D[(’C’, i-1)],
D[(’W’, i-1)] - SWITCHCOST
) + PROFIT[(’C’, weather[i])] - ADCOST

A[(’C’, i)] = ’C’ if D[(’C’, i-1)] >= D[(’W’, i-1)]-SWITCHCOST else ’W’

D[(’W’, i)] = max(
D[(’C’, i-1)] - SWITCHCOST,
D[(’W’, i-1)]
) + PROFIT[(’W’, weather[i])] - ADCOST

A[(’W’, i)] = ’W’ if D[(’W’, i-1)] >= D[(’C’, i-1)]-SWITCHCOST else ’C’

cur = ’C’ if D[(’C’, len(weather)-1)] > D[(’W’, len(weather)-1)] else ’W’
s = ""
for i in xrange(len(weather)-1, 0, -1):

s = cur + s
cur = A[cur, i]

s = cur + s
print weather
print s

print ’W:’,
for i in xrange(len(weather)):

print D[(’W’, i)],
print ’\nC:’,
for i in xrange(len(weather)):

print D[(’C’, i)],

return max(D[(’C’, len(weather)-1)], D[(’W’, len(weather)-1)])

5

