
1 	

	
Multiple Sequence Alignment

	
In previous lectures, we considered alignments between two sequences. Here, we consider the
case where we wish to align three or more entire sequences (i.e., global multiple sequence
alignments). Usually, local multiple sequence alignment methods only look for ungapped
alignments, or motifs, and we will return to motif finding in a future lecture.
	
Definition: Given k strings, S1, S2, …, Sk, a multiple sequence alignment (MSA) is obtained by
inserting gaps in the strings to make them all the same length.
	
E.g., the following is a MSA of 4 sequences MQPILLLV, MLRLL, MKILLL, and
MPPVLILV.
	

M Q P I L L L V
M L R - L L - -
M K - I L L L -
M P P V L I L V

	
No column may be all gaps.
	
Multiple sequence alignments are used for many reasons, including:
(1) to detect regions of variability or conservation in a family of proteins,
(2) to provide stronger evidence than pairwise similarity for structural and functional inferences,
(3) to serve as the first step in phylogenetic reconstruction, in RNA secondary structure

prediction, and in building profiles (probabilistic models) for protein families or DNA
signals.

	
For pairwise alignments, we scored each column by looking at matches, mismatches, and gaps in
the two sequences (in practice, protein sequences are scored using substitution matrices).
However, now we have multiple characters in each column, and it is not obvious what the best
way to score a column is. There are many possibilities. The sum-of-pairs (SP) is a common
scoring scheme. Here, each column in an alignment is scored by summing the scores of all pairs
of symbols in that column. The score of the entire alignment is then summed over all column
scores. We will assume that a match = 1, a mismatch = -1, and a gap = -2. For example, the
sum-of-pairs score of the 4th column of the MSA given earlier is:
	
SP(I,-,I,V)
= score(I,-) + score(I, I) +score(I,V) + score(-,I) + score (-,V) + score(I,V)
= -2 + 1 + -1 + -2 + -2 + -1 = -7

	

	

	
	
	
	
	

2

Although there is never an entire column of gaps, if we look at any 2 sequences in the
alignment, there may be columns where both have gaps. The value of score(-,-) is set equal to 0;
this eliminates double counting (or extra penalization) for the use of gaps.

Let MSA-SP denote the optimum (i.e., highest scoring) MSA under the SP scoring system.

Note that it is not at all clear that sum-of-pairs is the best scoring system to use. The SP scoring
system tends to overweight contributions of differences from many very similar sequences.

E.g., column A,A,A,C

	
	
	
	
	
	
	
	
	
The sum-of-pairs score for this column is 3 - 3 = 0.
	
However, evolutionarily speaking, say the relationship between the sequences is:

	
	
	
	
	
	
	
Then a single C A mutation can explain the data, and thus SP tends to overcount mutations.
	
Note: An optimum MSA-SP may not give the optimal pairwise alignments. For example, if a
match = 1, a mismatch = -1, and a gap = -2, then the optimum MSA-SP for the sequences AT, A,
T, AT and AT is as follows, with the induced alignment between A & T also shown.
	

	

However, the optimum pairwise arrangement for the two sequences A and T is , which, if it
were part of the MSA would yield:

	
	

3 	

	

	
	
	
	
	
	
Determining optimum multiple sequence alignments
	
We now outline the algorithm for finding an optimum MSA under the SP measure. It is
straighforward to see how to adapt it for other similiarity measures. However, this algorithm is
usually not used in practice because it is computationally too time consuming. This approach
uses dynamic programming.
	
Assume for simplicity that our k sequences S1, S2, …, Sk all have length n. If we were aligning 2
such sequences, we would need an array of size [n + 1][n + 1] to account for all possible
solutions. Similarly, for k sequences, we need an array of size [n + 1]k, or a
k-dimensional array.
	
As with the pairwise alignments, let’s look at the last column in the alignment. For each
sequence, there are 2 possibilities: either there is a letter or a gap in the last character position.
Taken for all k sequences, there are then 2k –1 possibilities (we subtract 1 because the case of
every sequence having a gap in the last character position is not allowed).

	

	
Thus, we are keeping track of a k-dimensional array sim, where sim(i) = sim(i1, i2, …, ik)
Then,
sim(i) = maxb,c {sim(i - b) + SP(c)}, where b 0 , over all binary vectors b of length k
	

c j = Sj[ij], if b j = 1
“-“, if b j = 0

	
Vector b enumerates over all 2k–1 possibilities. That is, when b j = 1, we’re considering the
case where the ij

th character of a sequence j is used. Vector c keeps track of the actual characters
used.
	
Therefore, we must:
(1) fill out the entire array which has [n + 1]k cells,
(2) consider 2k – 1 possibilities for each cell in the array, and
(3) compute the sum-of-pairs measure for each of these possibilities.

	
Thus, this algorithm would take roughly (n + 1)k(2k – 1)(k2) time for the SP measure. This is
impractical even for numbers as small as k = 10. Thus, most packages for multiple sequence
alignment do not compute the optimum MSA.
	
Multiple Sequence Alignment Heuristics: Progressive Alignments
	
Most packages use heuristics to compute multiple sequence alignments. The basic idea of many
of these heuristics is to compute pairwise alignments and to merge alignments consistently. Note

4 	

that given all pairwise alignments, it is usually impossible to arrange an MSA consistent with all
of them.
	
E.g., consider aligning the three sequences: acg, cga, gac. Their optimum pairwise alignments
are as follows:

	
	
	
	
	
	
	
	
	
Merge using Merge using Merge using
alignments alignments alignments
with 1st sequence with 3rd sequence with 2nd sequence

- a c g - - - a c g a c G - -
- - c g a - g a c - - c G a -
g a c - - c g a - - - - G a c

	
Now the MSA

is not consistent
with the
optimum
pairwise

alignments of
the 2nd and 3rd

sequences

Now the MSA
is not consistent

with the
optimum
pairwise

alignments of
the 1st and 2nd

sequences

Now the MSA
is not consistent

with the
optimum
pairwise

alignments of
the 1st and 3rd

sequences
	
Note, however, that given any k-1 alignments relating k sequences, there is always an MSA
consistent with all k-1 pairwise alignments. That is, there is an MSA such that the induced
pairwise alignments in the MSA include the given k-1 alignments.
	
With k = 5, this would mean that there are 4 alignments relating all the sequences. For example,
we could have pairwise alignments for the edges in the following graph.

	
	
	
Note that we can never
have a cycle if we have
k-1 alignments relating
all k sequences, and thus
we can maintain consistency
with the k-1 alignments.

	
	
	
We can use this fact to devise multiple sequence alignment heuristics. One such heuristic for
MSA is to just add the sequences to an alignment, one by one, maintaining consistency and
following the “once a gap, always a gap” rule.

5 	

S1

S1 2

2

	 	 S2 S3 S4 S5

	 - 7 -2 0 -3
7 - -2 0 -4
-2 -2 - 0 -7
0 0 0 - -3
-3 -4 -7 -3 -

	
	 1

-11
-3
-17

	 1 -11 -3 -17 	
	

Star Alignment Heuristic: The twist in the star alignment heuristic is that you must (1) find the
sequence that is the most similar to all the rest using pairwise alignment (see below) and (2) use
it as the “center of a star” when aligning all other sequences. I.e., you will only use pairwise
alignments with the center sequence when building the multiple sequence alignment.

	

	
	
	
	
	

S1 is the center
	

	
	
	
	
	

Formally speaking, (1) is simply saying to find Sc such that
i c

For example, say your sequences are:

sim (Si, Sc) is maximized.

S1 A T T G C C A T T
S2 A T G G C C A T T
S3 A T C C A A T T T T
S4 A T C T T C T T 	
S5 A C T G A C C 	 	

	

Then, we first compute all pairwise alignments and scores. The following matrix gives the
alignment scores for all pairs, as well as the sum of these scores for each sequence.

	
	
	

S1 is the sequence most
S2 similar to the rest, and
S3 below are the best
S4 alignments between S1 and
S5 the rest of the sequences.

	
	

S1

S2

A
A

T
T

T
G

G
G

C
C

C
C

A
A

T
T

T
T

	

S1 A T T G C C A T T - -
S3 A T C - C A A T T T T

S1 A T T G C C A T T 	 	
S4 A T C T T C - T T 	 	

S1 A T T G C C A T T 	 	
S5 A C T G A C C - - 	 	

	

Now, let’s build the alignment.

6 	

	

Let’s use the alignment of S1and S2.
S1 A T T G C C A T T
S2 A T G G C C A T T

	

	
S1 and S2 are

aligned
	

Now, let’s add S3, using its alignment to S1.
S1 A T T G C C A T T - - S1, S2, and
S2 A T G G C C A T T - - S3 are
S3 A T C - C A A T T T T aligned

	
Then, let’s add S4, using its alignment to S1.
S1 A T T G C C A T T - - S1, S2, S3,
S2 A T G G C C A T T - - and S4

S3 A T C - C A A T T T T are
S4 A T C T T C - T T - - aligned

	
Finally, let’s add S5, using its alignment to S1.
S1 A T T G C C A T T - - S1, S2,
S2 A T G G C C A T T - - S3, S4

S3 A T C - C A A T T T T and S5

S4 A T C T T C - T T - - are
S5 A C T G A C C - - - - aligned

	
For consistency, once a gap is added, it is never removed.

	
The running time is dominated by computing the pairwise alignments. If k sequences are length
n, then:

	

(1) we compute k (k 1)
2

	

pairwise alignments

(2) each alignment takes time n2.
	

Thus, the running time for computing all pairwise alignments is O(k2n2). If l is an upperbound
on alignment lengths, then we can merge alignments in k2l time. Therefore, the total running
time is O(kn2 + k2l). Note that the Star Alignment does not optimize the SP criterion. Therefore,
there is a trade-off between optimization and practicality. Actually, the star alignment method is
not used much. In the next lecture, we’ll discuss a similar method that is very widely used: the
progressive alignment method of the ClustalW package. ClustalW uses the same basic method
as the Star Alignment. However, it compares pairwise alignments and then adds individual
sequences based on a given order of similarity.

	
Further Reading

	
Setubal & Meidanis. Introduction to Computational Molecular Biology, PWS Publishing
Company, 1997. Chapter 3.

