
2

How the Burrows-Wheeler Transform works

This chapter will look in detail at how the Burrows-Wheeler Transform is
implemented in practice. The examples given in Chapter 1 overlooked some
important practical details — to transform a text of n characters the encoder
was sorting an array of n strings, each n characters long, and the decoder
performed n sorts to reverse the transform. This complexity is not necessary
for the BWT, and in this chapter we will see how to perform the encoding
and decoding in O(n) space, and O(n log n) time. In fact, using a few tricks,
the time can be reduced to O(n).

We will also look at various auxiliary data structures that are used for
decoding the Burrows-Wheeler Transform, as some of them, while not essential
for decoding, are useful if the transformed text is to be searched. These extra
structures can still be constructed in O(n) time so in principle they add little
to the decoding cost.

This chapter considers only the transform; in the next chapter we will
look at how a compression system can take advantage of the transformed
text to reduce its size; we refer to this second phase as the “Local to Global
Transform”, or LGT.

We will present the Burrows-Wheeler Transform for coding a string T of
n characters, T [1 . . . n], over an alphabet Σ of |Σ| characters. Note that there
is a summary of all the main notation in Appendix A on page 309.

2.1 The forward Burrows-Wheeler Transform

The forward transform essentially involves sorting all rotations of the input
string, which clusters together characters that occur in similar contexts. Fig-
ure 2.1a shows the rotations A that would occur if the transform is given T
= mississippi as the input1, and Figure 2.1b shows the result of sorting A,
which we will refer to as As.

1 We will use mississippi as a running example in this chapter. This string is
often used in the literature as an example because it illustrates the features of

20 2 How the Burrows-Wheeler Transform works

mississippi

ississippim

ssissippimi

sissippimis

issippimiss

ssippimissi

sippimissis

ippimississ

ppimississi

pimississip

imississipp

(a)

imississipp

ippimississ

issippimiss

ississippim

mississippi

pimississip

ppimississi

sippimissis

sissippimis

ssippimissi

ssissippimi

(b)

Fig. 2.1. (a) The array A containing all rotations of the input mississippi; (b)
As, obtained by sorting A. The last column of As (usually referred to as L) is the
Burrows-Wheeler Transform of the input

However, rather than use O(n2) space as suggested by Figure 2.1, we can
create an array R[1 . . . n] of references to the rotated strings in the input
text T . Initially R[i] is simply set to i for each i from 1 to n, as shown in
Figure 2.2a, to represent the unsorted list. It is then sorted using the substring
beginning at T [R[i]] as the comparison key. Figure 2.2b shows the result of
sorting; for example, position 11 is the first rotated string in lexical order
(imiss...), followed by position 8 (ippim...) and position 5 (issip...);
the final reference string is R = [11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3].

The array R directly indexes the characters in T corresponding to the first
column of As, referred to as F in the BWT literature. The last column of As

(referred to as L) is the output of the BWT, and can be read off as T [R[i]−1],
where i ranges from 1 to n (if the index to T is 0 then it refers to T [n]). In
this case the transformed text is L = pssmipissii. We also need to transmit
an index a to indicate to the decoder which position in L corresponds to the
last character of the original text (i.e. which row of As contains the original
string T). In this case the index a = 5 is included.

In the above description the transform is completed using just O(n) space
(for R). The time taken is O(n) for the creation of the array R , plus the time
needed for sorting. Conventionally sorting is regarded as taking O(n log n)
average time if a standard method such as quicksort is used. However, some
string sequences can cause near-worst-case behavior in some versions of quick-
sort, particularly if there is a lot of repetition in the string and the pivot for
quicksort is not selected carefully. This corresponds to the traditional O(n2)
worst-case of quicksort where the data is already sorted — if T contains long
runs of the same character then the A array will contain long sorted sequences.

the BWT well. Note that there is no unique sentinel (end of string) symbol in this
example; it is not essential for the BWT, although it can simplify some aspects,
particularly when we deal with suffixes later.

2.1 The forward Burrows-Wheeler Transform 21

 R T

 1 m

 2 i

 3 s

 4 s

 5 i

 6 s

 7 s

 8 i

 9 p

10 p

11 i

(a) (b)

 R T

11 m

 8 i

 5 s

 2 s

 1 i

10 s

 9 s

 7 i

 4 p

 6 p

 3 i

...

...

...

...

...

...

...

Fig. 2.2. The R array used to sort the sample file mississippi

For example, Figure 2.3 shows the A array for the input aaaaaab. It is already
sorted because of the way the b terminates the long sequence of a characters.
It is possible to avoid this worst case behavior in quicksort with techniques
such as the median-of-three partition selection, but the nature of the BWT
problem means that even better sorting methods are possible.

Not only can the pre-sorted list cause poor performance in some versions of
quicksort, but the long nearly identical prefixes mean that lexical comparisons
will require many character comparisons, which means that the constant-time
assumption for comparisons is invalid; if all the characters are identical then
it could take O(n) time for each of the O(n2) comparisons, which would be
extremely slow, especially considering that for such a case the BWT involves
no permutations at all. Long repeated strings can occur in practice in images
that contain many pixels of the same color (such as a scan of a black-and-
white page with little writing on it) and in genomic data where the alphabet
is very small and repeated substrings are common.

aaaaaab

aaaaaba

aaaabaa

aaabaaa

aabaaaa

abaaaaa

baaaaaa

Fig. 2.3. The array A containing all rotations of the input aaaaaab

22 2 How the Burrows-Wheeler Transform works

There are several ways to avoid this problem. Burrows and Wheeler ob-
served in their original paper that by having a unique sentinel character, the
sorting problem is equivalent to sorting all the suffixes in T , which can be
done in linear time and space using a suffix tree. This is discussed in more
detail in Chapters 4 and 4, but we should mention that the main drawback
of this approach is that although the space requirement is O(n), the constant
factor can be significant.

Instead, Burrows and Wheeler proposed a modified version of quicksort
that applies a radix sort to the first two characters of each sort key. Each
of the two-character buckets now needs to be sorted, but special attention
is paid to buckets where the first two characters are the same, since these
are likely to indicate long runs of the same character (typically null or space
characters), which can take a long time to make a lexical comparison for
comparison based sorting, yet are trivial to sort because of how they were
generated. Eventually quicksort is only applied to groups of substrings that
need sorting within buckets. For example, the strings in Figure 2.3 would be
split into three buckets for those beginning with aa, ab and bb respectively.
The aa bucket does not automatically have quicksort applied to it because the
first two characters are the same, and indeed in this case the bucket happens to
already be sorted, and would cause long comparisons between strings because
of the long prefixes of runs of the letter a.

Another approach is to eliminate this problem by coding long runs of the
same character using a run-length encoding technique, where runs of repeated
characters are replaced with a shorter code. This can sometimes even have a
positive effect on the amount of compression, although the main purpose is to
avoid the poor sorting speed that occurs in the special cases described above
by eliminating long runs of the same character. One downside of this is that
the original text is no longer available directly in the BWT, which can affect
some of the compressed-domain searching methods described later in this
book. Also, the run-length encoding will change the context information that
the BWT uses, hence the effect on compression is not necessarily positive.

One issue that is inevitable with the BWT is that it requires a large block
of memory to store the input string (T) and the index to the strings being
sorted (R). If the block is too small the compression will be poor, but if too
large, it may use too much memory. Even if the memory is available, there
can be issues with caching, and there are performance benefits from keeping
blocks within the size of a cache, not just within main memory. The pattern
of access to the memory will be random because of the sorting operations
that need to be done (the same problem occurs during decoding as well). On
modern computers there can be several layers of caching that will be trying to
guess the memory access patterns, and these may have complex interactions
with the accesses needed for the BWT. This concern needs to be taken into
consideration when deciding on the block size; if it fits within the cache (and
not just within main memory), it may well be able to operate faster. On the
other hand, as parallel machines with on-board memory become more popular

2.2 The reverse Burrows-Wheeler Transform 23

the BWT method can potentially be adapted to take advantage of this kind of
architecture, and it is even possible that it will have performance benefits in
a parallel environment over other popular compression methods. The actual
performance in practice will depend on the architecture of the machine, the
amount of memory available, and the design of any caches.

Appendix B lists web sites that provide a variety of source code for per-
forming the BWT. Some are suitable for experimenting with the transform
and tracing the process, while others are production systems the have opti-
mized the details of coding to perform well in practice.

2.2 The reverse Burrows-Wheeler Transform

The reverse transform — taking a BWT permuted text and reconstructing
the original input T — is somewhat more difficult to implement than the
forward transform, but it can still be done in O(n) time and space if care is
taken. The example given in Figure 1.2 reconstructed the As array, but as
for encoding, in practice there is no need to store this O(n2) array. Generally
two O(n) index arrays will be needed, plus two O(|Σ|) arrays to count the
characters in the input. There are several ways that decoding can be done.
The original paper by Burrows and Wheeler produces the output in reverse,
although it is not difficult to produce the output in the original order. We will
show how to generate data structures for both of these cases.

We will use the decoding of the string mississippi as a running example.
Figure 2.4 shows the array As for this example, with columns F and L labeled.
As is not stored explicitly in practice, but we shall use it in the meantime to
illustrate how decoding can be done. The decoder can determine F simply
by sorting L, since it contains exactly the same characters, just in a different
order — each column of As contains the same set of characters because the
rows are all the rotations of the original string. In fact, F need not be stored,
as it can be generated implicitly by counting how often each character appears
in L.

Looking at As helps us to see the information that is needed to perform
the decoding. Given just F and L, the key step is determining which char-
acter should come after a particular character in F . Consider, for example,
the two rows ending with a p (rows 1 and 6). Because of the rotation, the
order of these two rows is determined by the characters that come after the
respective occurrences of p in T (imi... and pim... respectively). Thus the
first occurrence of p in L corresponds to the first occurrence of p in F , and
likewise with the second occurrence. This enables us to work through the text
backwards: if we have just decoded the second p in L, then it must correspond
to the one in row 7 of F . Looking at row 7, the L column tells us that the
p was preceded by an i. In turn, because this is the second i in L, it must
correspond to the second i in F , which is in row 2. We carry on traversing
the L and F arrays in this way until the whole string is decoded — in reverse.

24 2 How the Burrows-Wheeler Transform works

F L

i m i s s i s s i p p

i p p i m i s s i s s

i s s i p p i m i s s

i s s i s s i p p i m

m i s s i s s i p p i

p i m i s s i s s i p

p p i m i s s i s s i

s i p p i m i s s i s

s i s s i p p i m i s

s s i p p i m i s s i

s s i s s i p p i m i

1

2

3

4

5

6

7

8

9

10

11

Fig. 2.4. The array As for mississipi; F and L are the first and last columns
respectively

The correspondence could also have been used to decode the string in its
original order. For example, looking at the p in L[6], we can determine that it
is followed by F [6], a p. Since this is the first p in F , it corresponds to the first
p in L, that is, row 1. That p is followed by an i, and so on. It is marginally
simpler to decode the string in reverse order, so usually the BWT literature
uses the backwards decoding, although we shall be using both orders in this
book.

An easy way to follow the above relationships is to number the appearances
of the characters in F and L. Figure 2.5 shows the F and L columns from
Figure 2.4, but we have numbered the occurrences of each character in order
from first to last using subscripts. This makes the decoded string easy to read
off; for example, the fourth row has L[4] = m1, and the corresponding F [4]
tells us that it is followed by i4. Since i4 is in L[11], we can get the next
character from F [11], which is s4. The entire string is decoded in the order
m1i4s4s2i3s3s1i2p2p1i1.

In practice the decoder never reconstructs As or F in full, but implicitly
creates indexes to represent enough of its structure to decode the original
string. L is stored explicitly (the decoder just reads the input and stores it in
L), but F is stored implicitly to save space and to efficiently provide the kind
of information needed during decoding.

Figure 2.6 shows three auxiliary arrays that are useful for decoding. K[c]
is simply a count of how many times each character c occurs in F , which
is easily determined by counting the characters in L. M [c] locates the first
position of character c in the array F , so K and M together effectively store
the information in F . C[i] stores the number of times the character L[i] occurs
in L earlier than position i; for example, the last character in L is i, and i

2.2 The reverse Burrows-Wheeler Transform 25

F L

1 i1 p
1

2 i2 s1

3 i3 s2

4 i4 m1

5 m1 i1

6 p
1
p
2

7 p
2
i2

8 s1 s3

9 s2 s4

10 s3 i3

11 s4 i4

Fig. 2.5. Using the character order to perform the reverse transform

occurs 3 times in the earlier part of L. These three arrays make it easy to
traverse the input in reverse.

F L

i m i s s i s s i p p

i p p i m i s s i s s

i s s i p p i m i s s

i s s i s s i p p i m

m i s s i s s i p p i

p i m i s s i s s i p

p p i m i s s i s s i

s i p p i m i s s i s

s i s s i p p i m i s

s s i p p i m i s s i

s s i s s i p p i m i

m

p

s 4

2

1

4

MK

i

C

0

0

1

0

0

1

1

2

3

2

3

Fig. 2.6. The array (As) that is implicitly reconstructed to decode the string
pssmipissii

Algorithm 2.1 shows how the input (transformed text L and starting index
a) is used to construct these three arrays, which are then used to produce Q,
the decoded text. The first step is simply to count the characters into K
by going through L (the input), shown in lines 1 to 7 of the algorithm. At
the same time, it is convenient to construct C by recording the value of K
before each increment. The array M is then constructed in lines 10 to 14 by
accumulating the values in C. We now have sufficient structures to decode the
text in reverse, which happens in lines 16 to 20.

26 2 How the Burrows-Wheeler Transform works

BWT-Decode(L, a)
1 for c← 1 to |Σ| do

2 K[c]← 0
3 end for

4
5 for i← 1 to n do

6 C[i]← K[L[i]]
7 K[L[i]]← K[L[i]] + 1
8 end for

9
10 sum← 1
11 for c← 1 to |Σ| do

12 M [c]← sum
13 sum← sum + K[c]
14 end for

15
16 i← a
17 for j ← n downto 1 do

18 Q[j]← L[i]
19 i← C[i] + M [L[i]]
20 end for

Algorithm 2.1: Reconstruction of the original text

Note that the decoder needs to be given the index a, which is the element
in L that corresponds to the end of the text. In our running example a would
be 5 — it corresponds to the row in As that represents the original string T .
L[5] gives us i as the last character of Q. The corresponding value in C is 0,
which means that this is the first occurrence of an i in L. Thus it corresponds
to the first occurrence of i in F , which is found by adding C[i] to M [L[i]], in
line 19 of the algorithm. This proceeds until n characters have been decoded,
at which point the whole string is stored in Q.

Reversing the BWT this way requires four arrays (L, K, C and M). K and
M contain just |Σ| entries (the characters are represented by integers from 1
to |Σ|) and are likely to be of negligible size; L and C contain n values, and
hence use O(n) space. We would normally also have to allow for Q, which
uses O(n) space to store the backwards string before it can be stored in the
correct order. The time taken is also O(n) + O(|Σ|), since the main work is
in the two passes through the n input items — once to count them, and once
to decode them.

It may be inconvenient that the output is generated backwards, and there
are two ways to address this. Below we will look at how to use an extra
auxiliary array to do this, but if the goal is simply to decode the input, this
is less efficient than using the temporary Q array to store the output. An
even simpler approach is to reverse the order of the string at encoding time.

2.2 The reverse Burrows-Wheeler Transform 27

This should not take any extra time, since the whole string must be read into
memory anyway — we simply fill the array T in reverse. It may have an impact
on compression, depending on the type of data, but for most data there will
be no significant impact, and it may even improve compression. The cases
where there is an impact tend to be binary files with specific patterns such as
leading zeros before numbers. In such cases it is worth being aware of the issue
anyway, and the ordering should be chosen to suit the data, since the amount
of compression can depend on details such as whether the representation puts
the most significant byte of a large number first or last (big- or little-endian).
For textual data, reversing the input string means that the system is based
around prior contexts of characters, which is how many other compression
methods work anyway.

If the transformed text is to be decoded multiple times, it is possible to
store one or more auxiliary arrays that enable us to traverse sections of the
text at will. This can be useful for pattern matching because it allows segments
of the original string to be read off when needed for matching, but still relates
the data to the implicit sorted array As, which provides access to a sorted list
of strings that are useful for searching.

The value C[i] + M [L[i]] is the key to navigating through L to decode the
original string, so instead of doing the decoding immediately (which was in
lines 16 to 20 of Algorithm 2.1), an array V is created to store the navigation
information, shown in Algorithm 2.2. This array can then be used to step
backwards through the original characters; the character at L[i] is preceded
by the character at L[V [i]]. The values of V for our running example are
shown in Figure 2.7.

Compute-array-V(C, M, L) 1 i← a
2 for j ← n downto 1 do

3 V [i]← C[i] + M [L[i]]
4 i← V [i]
5 end for

Algorithm 2.2: Creating the array V to allow for efficient future decoding
of the input

It is just as easy to create an auxiliary array that will decode the original
text forwards rather than backwards. This array will be called W , and it
identifies the position of the character in L that comes after the present one,
compared with V , which gives the position that comes before. As for V , this
new array is not essential for decoding, but it can be useful because it preserves
access to the sorted structure of L, which can be exploited during pattern
matching. Figure 2.7 shows the values of W for the running example.

Algorithm 2.3 shows how the W array can be created. Note that the array
M that was created in Algorithm 2.1 is used, and that afterwards its contents

28 2 How the Burrows-Wheeler Transform works

 F L V W

 1 i m i s s i s s i p p 6 5

 2 i p p i m i s s i s s 8 7

 3 i s s i p p i m i s s 9 10

 4 i s s i s s i p p i m 5 11

 5 m i s s i s s i p p i 1 4

 6 p i m i s s i s s i p 7 1

 7 p p i m i s s i s s i 2 6

 8 s i p p i m i s s i s 10 2

 9 s i s s i p p i m i s 11 3

10 s s i p p i m i s s i 3 8

11 s s i s s i p p i m i 4 9

Fig. 2.7. The auxiliary arrays V and W which can be used to decode the sample
string

are changed so they are no longer valid. Like V , the W array is created in
just O(n) time.

Compute-array-W(M, L)
1 for i← 1 to n do

2 W [M [L[i]]]← i
3 M [L[i]]←M [L[i]] + 1
4 end for

Algorithm 2.3: Creating the array W to allow for future decoding of the
input

W can then be used to generate the original text in its correct order using
the simple sequence shown in Algorithm 2.4.

Decode-with-array-W(W, L)
1 i← a
2 for j ← 1 to n do

3 Q[j]← L[i]
4 i←W [i]
5 end for

Algorithm 2.4: Decoding the original text in its correct order using W

2.3 Special cases 29

If both forwards and backwards generation of the original text is needed,
it is possible to create V and W in one pass as shown in Algorithm 2.5.

V and W are essentially a mapping between F and L in each direction. In
some of the pattern matching algorithms in Chapter 7 we will also recreate the
array R that was used in the encoder to store the sort order of the substrings,
and the reverse mapping of R, called R′. These provide a mapping between
F and T ; for example, if R[i] is k, then F [i] was the k-th character in T ,
and R′[k] will be i. All of the arrays for our mississippi example are shown
in Figure 2.8, and the algorithm for creating R and R′ from W is given in
Algorithm 2.6.

i T F L C V W R′ R

1 m i p 0 6 5 5 11
2 i i s 0 8 7 4 8
3 s i s 1 9 10 11 5
4 s i m 0 5 11 9 2
5 i m i 0 1 4 3 1
6 s p p 1 7 1 10 10
7 s p i 1 2 6 8 9
8 i s s 2 10 2 2 7
9 p s s 3 11 3 7 4

10 p s i 2 3 8 6 6
11 i s i 3 4 9 1 3

Fig. 2.8. Array values that can be used to do the BWT and searching of the text
mississippi

Compute-arrays-V-and-W(M, L)
1 for i← 1 to n do

2 V [i]←M [L[i]]
3 W [M [L[i]]]← i
4 M [L[i]]←M [L[i]] + 1
5 end for

Algorithm 2.5: Creating both the V and W arrays in one pass

2.3 Special cases

In the previous examples the auxiliary arrays traverse each character in L to
recreate the original text. There is a special case for the BWT that occurs if the

30 2 How the Burrows-Wheeler Transform works

Compute-arrays-R-and-R′(W)
1 i← a
2 for j ← 1 to n do

3 R′[j]← i
4 R[i]← j
5 i←W [i]
6 end for

Algorithm 2.6: Construction of R and R′ auxiliary arrays in the decoder

input text T is nothing but repetitions of a substring, such as blahblahblah,
or even aaaaaaa. If this happens, some of the rotations of the text will be
identical, and the reverse transform will end up using only one of the substring
occurrences for decoding.

For example, the text cancan results in the decoding arrays shown in
Figure 2.9. The arrows show the cycle of three characters that will occur
following the V for W links; the other three characters in L are never used.
This will still decode correctly; it is just that it is important to decode n times,
rather than relying on coming back to the starting point to determine when
to stop.

F L V W

a n c a n c 3 5

a n c a n c 4 6

c a n c a n 5 1

c a n c a n 6 2

n c a n c a 1 3

n c a n c a 2 4

Fig. 2.9. The V and W arrays that are constructed for the string cancan

An even simpler case occurs when the coded text is just one character
repeated many times; the decoder will only use the first occurrence of the
character for all decoding.

It is worth being aware of this special case because it can also affect pattern
matching. Of course, such a case is extremely unlikely to occur in practice. It
might happen that a file containing just one repeated value is coded, such as
the pixels in a blank image, but even in this case, just one different piece of
information in the file, such as the image resolution, will prevent the rotations
from being identical. If a particular algorithm is dependent on this not hap-

2.4 Further reading 31

pening, it can be prevented by simply inserting one unique character (such as
an end of string sentinel symbol) in T before it is transformed.

2.4 Further reading

The original Burrows and Wheeler paper (Burrows and Wheeler, 1994) re-
mains an excellent explanation of the transform, and includes techniques for
implementing the transform efficiently, including using a suffix tree in the for-
ward transform, ways to use quicksort efficiently for the forward transform,
and using counting rather than sorting in the reverse transform. Fenwick has
published a series of papers which look in detail at implementation of the
BWT; four early papers were mentioned in Chapter 1 (Fenwick, 1995b,c,
1996a,b); a summative paper can be found in the November 2007 special is-
sue of Theoretical Computer Science about the BWT (Fenwick, 2007), which
includes an algorithm for decoding a BWT file in natural order. The pro-
posal for using run-length encoding to avoid the sorting problem in the BWT
code was made in (Fenwick, 1996a). Fenwick’s report also describes a pri-
vate communication from Wheeler that gives an effective (if somewhat ad
hoc) adaptation of quicksort that takes advantage of the particular structures
available in the BWT.

The BWT is not the only way to permute texts and still be able to recover
them, although other approaches are closely related. A number of such variants
are described in Chapter 6.

The names of the arrays used in this chapter, and the rest of the book, differ
slightly from some of those used in the BWT literature. This is explained in
Appendix A; the main problem is that there is a conflict between the notation
used in the pattern matching literature, and that used in the BWT literature.
The use of F and L is consistent with Burrows and Wheeler’s original paper;
however, their T array corresponds to V in this chapter, since we use T for
the input text.

