
10 Clustering and Trees

A common problem in biology is to partition a set of experimental data into

groups (clusters) in such a way that the data points within the same clus-

ter are highly similar while data points in different clusters are very differ-

ent. This problem is far from simple, and this chapter covers several algo-

rithms that perform different types of clustering. There is no simple recipe

for choosing one particular approach over another for a particular clustering

problem, just as there is no universal notion of what constitutes a “good clus-

ter.” Nonetheless, these algorithms can yield significant insight into data and

allow one, for example, to identify clusters of genes with similar functions

even when it is not clear what particular role these genes play. We conclude

this chapter with studies of evolutionary tree reconstruction, which is closely

related to clustering.

10.1 Gene Expression Analysis

Sequence comparison often helps to discover the function of a newly se-

quenced gene by finding similarities between the new gene and previously

sequenced genes with known functions. However, for many genes, the se-

quence similarity of genes in a functional family is so weak that one cannot

reliably derive the function of the newly sequenced gene based on sequence

alone. Moreover, genes with the same function sometimes have no sequence

similarity at all. As a result, the functions of more than 40% of the genes in

sequenced genomes are still unknown.

In the last decade, a new approach to analyzing gene functions has emerged.

DNA arrays allow one to analyze the expression levels (amount of mRNA pro-

duced in the cell) of many genes under many time points and conditions and

340 10 Clustering and Trees

to reveal which genes are switched on and switched off in the cell.1 The

outcome of this type of study is an n × m expression matrix I, with the n

rows corresponding to genes, and the m columns corresponding to differ-

ent time points and different conditions. The expression matrix I represents

intensities of hybridization signals as provided by a DNA array. In reality, ex-

pression matrices usually represent transformed and normalized intensities

rather than the raw intensities obtained as a result of a DNA array experi-

ment, but we will not discuss this transformation.

The element Ii,j of the expression matrix represents the expression level of

gene i in experiment j; the entire ith row of the expression matrix is called

the expression pattern of gene i. One can look for pairs of genes in an expres-

sion matrix with similar expression patterns, which would be manifested as

two similar rows. Therefore, if the expression patterns of two genes are sim-

ilar, there is a good chance that these genes are somehow related, that is,

they either perform similar functions or are involved in the same biological

process.2 Accordingly, if the expression pattern of a newly sequenced gene

is similar to the expression pattern of a gene with known function, a biolo-

gist may have reason to suspect that these genes perform similar or related

functions. Another important application of expression analysis is in the de-

ciphering of regulatory pathways; similar expression patterns usually imply

coregulation. However, expression analysis should be done with caution

since DNA arrays typically produce noisy data with high error rates.

Clustering algorithms group genes with similar expression patterns into clus-

ters with the hope that these clusters correspond to groups of functionally

related genes. To cluster the expression data, the n×m expression matrix is

often transformed into an n × n distance matrix d = (di,j) where di,j reflects

how similar the expression patterns of genes i and j are (see figure 10.1).3

The goal of clustering is to group genes into clusters satisfying the following

two conditions:

• Homogeneity. Genes (rather, their expression patterns) within a cluster

1. Expression analysis studies implicitly assume that the amount of mRNA (as measured by a
DNA array) is correlated with the amount of its protein produced by the cell. We emphasize that
a number of processes affect the production of proteins in the cell (transcription, splicing, trans-
lation, post-translational modifications, protein degradation, etc.) and therefore this correlation
may not be straightforward, but it is still significant.
2. Of course, we do not exclude the possibility that expression patterns of two genes may look
similar simply by chance, but the probability of such a chance similarity decreases as we increase
the number of time points.
3. The distance matrix is typically larger than the expression matrix since n � m in most ex-
pression studies.

10.1 Gene Expression Analysis 341

Time 1 hr 2 hr 3 hr
g1 10.0 8.0 10.0
g2 10.0 0.0 9.0
g3 4.0 8.5 3.0
g4 9.5 0.5 8.5
g5 4.5 8.5 2.5
g6 10.5 9.0 12.0
g7 5.0 8.5 11.0
g8 2.7 8.7 2.0
g9 9.7 2.0 9.0
g10 10.2 1.0 9.2

(a) Intensity matrix, I

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

g1 0.0 8.1 9.2 7.7 9.3 2.3 5.1 10.2 6.1 7.0
g2 8.1 0.0 12.0 0.9 12.0 9.5 10.1 12.8 2.0 1.0
g3 9.2 12.0 0.0 11.2 0.7 11.1 8.1 1.1 10.5 11.5
g4 7.7 0.9 11.2 0.0 11.2 9.2 9.5 12.0 1.6 1.1
g5 9.3 12.0 0.7 11.2 0.0 11.2 8.5 1.0 10.6 11.6
g6 2.3 9.5 11.1 9.2 11.2 0.0 5.6 12.1 7.7 8.5
g7 5.1 10.1 8.1 9.5 8.5 5.6 0.0 9.1 8.3 9.3
g8 10.2 12.8 1.1 12.0 1.0 12.1 9.1 0.0 11.4 12.4
g9 6.1 2.0 10.5 1.6 10.6 7.7 8.3 11.4 0.0 1.1
g10 7.0 1.0 11.5 1.1 11.6 8.5 9.3 12.4 1.1 0.0

(b) Distance matrix, d

g1g2

g3

g4

g5

g6

g7

g8

g9g10

(c) Expression patterns as points in three-dimentsional
space.

Figure 10.1 An “expression” matrix of ten genes measured at three time points, and
the corresponding distance matrix. Distances are calculated as the Euclidean distance
in three-dimensional space.

342 10 Clustering and Trees

Figure 10.2 Data can be grouped into clusters. Some clusters are better than others:
the two clusters in a) exhibit good homogeneity and separation, while the clusters in
b) do not.

should be highly similar to each other. That is, di,j should be small if i

and j belong to the same cluster.

• Separation. Genes from different clusters should be very different. That is,

di,j should be large if i and j belong to different clusters.

An example of clustering is shown in figure 10.2. Figure 10.2 (a) shows a

good partition according to the above two properties, while (b) shows a bad

one. Clustering algorithms try to find a good partition.

A “good” clustering of data is one that adheres to these goals. While we

hope that a better clustering of genes gives rise to a better grouping of genes

on a functional level, the final analysis of resulting clusters is left to biolo-

gists.

Different tissues express different genes, and there are typically over 10,000

genes expressed in any one tissue. Since there are about 100 different tissue

types, and since expression levels are often measured over many time points,

gene expression experiments can generate vast amounts of data which can

be hard to interpret. Compounding these difficulties, expression levels of

related genes may vary by several orders of magnitude, thus creating the

problem of achieving accurate measurements over a large range of expres-

sion levels; genes with low expression levels may be related to genes with

high expression levels.

10.2 Hierarchical Clustering 343

Figure 10.3 A schematic of hierarchical clustering.

10.2 Hierarchical Clustering

In many cases clusters have subclusters, these have subsubclusters, and so

on. For example, mammals can be broken down into primates, carnivora,

bats, marsupials, and many other orders. The order carnivora can be further

broken down into cats, hyenas, bears, seals, and many others. Finally, cats

can be broken into thirty seven species.4

4. Lions, tigers, leopards, jaguars, lynx, cheetahs, pumas, golden cats, domestic cats, small wild-
cats, ocelots, and many others.

344 10 Clustering and Trees

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g3, g5}

{g3, g5, g8}

{g2, g4}

{g2, g4, g10}

{g2, g4, g9, g10}

{g1, g6}

{g1, g6, g7}

{g1, g2, g4, g6, g7, g8, g9, g10}

{g1, g2, g3, g4, g5, g6, g7, g8, g9, g10}

Figure 10.4 A hierarchical clustering of the data in figure 10.1

Hierarchical clustering (fig. 10.3) is a technique that organizes elements into

a tree, rather than forming an explicit partitioning of the elements into clus-

ters. In this case, the genes are represented as the leaves of a tree. The edges

of the trees are assigned lengths and the distances between leaves—that is,

the length of the path in the tree that connects two leaves—correlate with

entries in the distance matrix. Such trees are used in both the analysis of ex-

pression data and in studies of molecular evolution which we will discuss

below.

Figure 10.4 shows a tree that represents clustering of the data in figure 10.1.

This tree actually describes a family of different partitions into clusters, each

with a different number of clusters (one for each value from 1 to n). You can

see what these partitions by drawing a horizontal line through the tree. Each

line crosses the tree at i points (1 ≤ i ≤ k) and correspond to i clusters.

10.2 Hierarchical Clustering 345

The HIERARCHICALCLUSTERING algorithm below takes an n×n distance

matrix d as an input, and progressively generates n different partitions of the

data as the tree it outputs. The largest partition has n single-element clusters,

with every element forming its own cluster. The second-largest partition

combines the two closest clusters from the largest partition, and thus has

n− 1 clusters. In general, the ith partition combines the two closest clusters

from the (i− 1)th partition and has n− i + 1 clusters.

HIERARCHICALCLUSTERING(d, n)

1 Form n clusters, each with 1 element

2 Construct a graph T by assigning an isolated vertex to each cluster

3 while there is more than 1 cluster

4 Find the two closest clusters C1 and C2

5 Merge C1 and C2 into new cluster C with |C1|+ |C2| elements

6 Compute distance from C to all other clusters

7 Add a new vertex C to T and connect to vertices C1 and C2

8 Remove rows and columns of d corresponding to C1 and C2

9 Add a row and column to d for the new cluster C

10 return T

Line 6 in the algorithm is (intentionally) left ambiguous; clustering algo-

rithms vary in how they compute the distance between the newly formed

cluster and any other cluster. Different formulas for recomputing distances

yield different answers from the same hierarchical clustering algorithm. For

example, one can define the distance between two clusters as the smallest

distance between any pair of their elements

dmin(C∗, C) = min
x∈C∗,y∈C

d(x, y)

or the average distance between their elements

davg(C∗, C) =
1

|C∗||C|

∑

x∈C∗,y∈C

d(x, y).

Another distance function estimates distance based on the separation of C1

and C2 in HIERARCHICALCLUSTERING:

d(C∗, C) =
d(C∗, C1) + d(C∗, C2)− d(C1, C2)

2

346 10 Clustering and Trees

In one of the first expression analysis studies, Michael Eisen and colleagues

used hierarchical clustering to analyze the expression profiles of 8600 genes

over thirteen time points to find the genes responsible for the growth re-

sponse of starved human cells. The HIERARCHICALCLUSTERING resulted

in a tree consisting of five main subtrees and many smaller subtrees. The

genes within these five clusters had similar functions, thus confirming that

the resulting clusters are biologically sensible.

10.3 k-Means Clustering

One can view the n rows of the n×m expression matrix as a set of n points

in m-dimensional space and partition them into k subsets, pretending that

k—the number of clusters—is known in advance.

One of the most popular clustering methods for points in multidimen-

sional spaces is called k-Means clustering. Given a set of n data points in

m-dimensional space and an integer k, the problem is to determine a set

of k points, or centers, in m-dimensional space that minimize the squared

error distortion defined below. Given a data point v and a set of k centers

X = {x1, . . . xk}, define the distance from v to the centers X as the distance

from v to the closest point in X , that is, d(v,X) = min1≤i≤k d(v, xi). We will

assume for now that d(v, xi) is just the Euclidean5 distance in m dimensions.

The squared error distortion for a set of n points V = {v1, . . . vn}, and a set

of k centers X = {x1, . . . xk}, is defined as the mean squared distance from

each data point to its nearest center:

d(V ,X) =

∑n
i=1 d(vi,X)2

n

k-Means Clustering Problem:

Given n data points, find k center points minimizing the squared error

distortion.

Input: A set, V , consisting of n points and a parameter k.

Output: A set X consisting of k points (called centers) that

minimizes d(V ,X) over all possible choices of X .

5. Chapter 2 contains a sample algorithm to calculate this when m is 2.

10.3 k-Means Clustering 347

While the above formulation does not explicitly address clustering n points

into k clusters, a clustering can be obtained by simply assigning each point to

its closest center. Although the k-Means Clustering problem looks relatively

simple, there are no efficient (polynomial) algorithms known for it. The Lloyd

k-Means clustering algorithm is one of the most popular clustering heuristics

that often generates good solutions in gene expression analysis. The Lloyd

algorithm randomly selects an arbitrary partition of points into k clusters and

tries to improve this partition by moving some points between clusters. In

the beginning one can choose arbitrary k points as “cluster representatives.”

The algorithm iteratively performs the following two steps until either it con-

verges or until the fluctuations become very small:

• Assign each data point to the cluster Ci corresponding to the closest clus-

ter representative xi (1 ≤ i ≤ k)

• After the assignments of all n data points, compute new cluster represen-

tatives according to the center of gravity of each cluster, that is, the new

cluster representative is
P

v∈C
v

|C| for every cluster C.

The Lloyd algorithm often converges to a local minimum of the squared

error distortion function rather than the global minimum. Unfortunately, in-

teresting objective functions other than the squared error distortion lead to

similarly difficult problems. For example, finding a good clustering can be

quite difficult if, instead of the squared error distortion (
∑n

i=1 d(vi,X)2), one

tries to minimize
∑n

i=1 d(vi,X) (k-Median problem) or max1≤i≤n d(vi,X) (k-

Center problem). We remark that all of these definitions of clustering cost em-

phasize the homogeneity condition and more or less ignore the other impor-

tant goal of clustering, the separation condition. Moreover, in some unlucky

instances of the k-Means Clustering problem, the algorithm may converge

to a local minimum that is arbitrarily bad compared to an optimal solution (a

problem at the end of this chapter).

While the Lloyd algorithm is very fast, it can significantly rearrange every

cluster in every iteration. A more conservative approach is to move only one

element between clusters in each iteration. We assume that every partition

P of the n-element set into k clusters has an associated clustering cost, de-

noted cost(P), that measures the quality of the partition P : the smaller the

clustering cost of a partition, the better that clustering is.6 The squared error

distortion is one particular choice of cost(P) and assumes that each center

6. “Better” here is better clustering, not a better biological grouping of genes.

348 10 Clustering and Trees

point is the center of gravity of its cluster. The pseudocode below implicitly

assumes that cost(P) can be efficiently computed based either on the dis-

tance matrix or on the expression matrix. Given a partition P , a cluster C

within this partition, and an element i outside C, Pi→C denotes the partition

obtained from P by moving the element i from its cluster to C. This move

improves the clustering cost only if ∆(i → C) = cost(P) − cost(Pi→C) > 0,

and the PROGRESSIVEGREEDYK-MEANS algorithm searches for the “best”

move in each step (i.e., a move that maximizes ∆(i→ C) for all C and for all

i 6∈ C).

PROGRESSIVEGREEDYK-MEANS(k)

1 Select an arbitrary partition P into k clusters.

2 while forever

3 bestChange← 0

4 for every cluster C

5 for every element i 6∈ C

6 if moving i to cluster C reduces the clustering cost

7 if ∆(i→ C) > bestChange

8 bestChange← ∆(i→ C)

9 i∗ ← i

10 C∗ ← C

11 if bestChange > 0

12 change partition P by moving i∗ to C∗

13 else

14 return P

Even though line 2 makes an impression that this algorithm may loop end-

lessly, the return statement on line 14 saves us from an infinitely long wait.

We stop iterating when no move allows for an improvement in the score; this

eventually has to happen.7

10.4 Clustering and Corrupted Cliques

A complete graph, written Kn, is an (undirected) graph on n vertices with

every two vertices connected by an edge. A clique graph is a graph in which

every connected component is a complete graph. Figure 10.5 (a) shows a

7. What would be the natural implication if there could always be an improvement in the score?

10.4 Clustering and Corrupted Cliques 349

(a)

1 2 3

7 6 5 4

(b)

Figure 10.5 a) A clique graph consisting of the three connected components K3, K5,
and K6. b) A graph with 7 vertices that has 4 cliques formed by vertices {1, 2, 6, 7},
{2, 3}, {5, 6}, and {3, 4, 5}.

clique graph consisting of three connected components, K3, K5, and K6. Ev-

ery partition of n elements into k clusters can be represented by a clique

graph on n vertices with k cliques. A subset of vertices V ′ ⊂ V in a graph

G(V, E) forms a complete subgraph if the induced subgraph on these vertices is

complete, that is, every two vertices v and w in V ′ are connected by an edge

in the graph. For example, vertices 1, 6, and 7 form a complete subgraph

of the graph in figure 10.5 (b). A clique in the graph is a maximal complete

subgraph, that is, a complete subgraph that is not contained inside any other

complete subgraph. For example, in figure 10.5 (b), vertices 1, 6, and 7 form

a complete subgraph but do not form a clique, but vertices 1, 2, 6, and 7 do.

350 10 Clustering and Trees

In expression analysis studies, the distance matrix (di,j) is often further

transformed into a distance graph G = G(θ), where the vertices are genes

and there is an edge between genes i and j if and only if the distance be-

tween them is below the threshold θ, that is, if di,j < θ. A clustering of

genes that satisfies the homogeneity and separation principles for an appro-

priately chosen θ will correspond to a distance graph that is also a clique

graph. However, errors in expression data, and the absence of a “univer-

sally good” threshold θ often results in distance graphs that do not quite

form clique graphs (fig. 10.6). Some elements of the distance matrix may

fall below the distance threshold for unrelated genes (adding edges between

different clusters), while other elements of the distance matrix exceed the

distance threshold for related genes (removing edges within clusters). Such

erroneous edges corrupt the clique graph, raising the question of how to

transform the distance graph into a clique graph using the smallest number

of edge removals and edge additions.

Corrupted Cliques Problem:

Determine the smallest number of edges that need to be added or

removed to transform a graph into a clique graph.

Input: A graph G.

Output: The smallest number of additions and removals of

edges that will transform G into a clique graph.

It turns out that the Corrupted Cliques problem is NP-hard, so some

heuristics have been proposed to approximately solve it. Below we describe

the time-consuming PCC (Parallel Classification with Cores) algorithm, and

the less theoretically sound, but practical, CAST (Cluster Affinity Search Tech-

nique) algorithm inspired by PCC.

Suppose we attempt to cluster a set of genes S, and suppose further that

S′ is a subset of S. If we are somehow magically given the correct clustering8

{C1, . . . , Ck} of S′, could we extend this clustering of S′ into a clustering of

the entire gene set S? Let S \ S′ be the set of unclustered genes, and N(j, Ci)

be the number of edges between gene j ∈ S\S′ and genes from the cluster Ci

in the distance graph. We define the affinity of gene j to cluster Ci as N(j,Ci)
|Ci|

.

8. By the “correct clustering of S′,” we mean the classification of elements of S′ (which is a
subset of the entire gene set) into the same clusters as they would be in the clustering of S that
has the optimal clustering score.

10.4 Clustering and Corrupted Cliques 351

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

g1 0.0 8.1 9.2 7.7 9.3 2.3 5.1 10.2 6.1 7.0
g2 8.1 0.0 12.0 0.9 12.0 9.5 10.1 12.8 2.0 1.0
g3 9.2 12.0 0.0 11.2 0.7 11.1 8.1 1.1 10.5 11.5
g4 7.7 0.9 11.2 0.0 11.2 9.2 9.5 12.0 1.6 1.1
g5 9.3 12.0 0.7 11.2 0.0 11.2 8.5 1.0 10.6 11.6
g6 2.3 9.5 11.1 9.2 11.2 0.0 5.6 12.1 7.7 8.5
g7 5.1 10.1 8.1 9.5 8.5 5.6 0.0 9.1 8.3 9.3
g8 10.2 12.8 1.1 12.0 1.0 12.1 9.1 0.0 11.4 12.4
g9 6.1 2.0 10.5 1.6 10.6 7.7 8.3 11.4 0.0 1.1
g10 7.0 1.0 11.5 1.1 11.6 8.5 9.3 12.4 1.1 0.0

(a) Distance matrix, d (distances shorter than 7 are shown in
bold).

g2

g9

g10g1

g6

g7

g8

g5 g3

g4

(b) Distance graph for θ = 7.

g2

g9

g10g1

g6

g7

g8

g5 g3

g4

(c) Clique graph.

Figure 10.6 The distance graph (b) for θ = 7 is not quite a clique graph. However, it
can be transformed into a clique graph (c) by removing edges (g1, g10) and (g1, g9).

352 10 Clustering and Trees

A natural maximal affinity approach would be to put every unclustered gene

j into the cluster Ci with the highest affinity to j, that is, the cluster that

maximizes N(j,Ci)
|Ci|

. In this way, the clustering of S′ can be extended into

clustering of the entire gene set S. In 1999, Amir Ben-Dor and colleagues

developed the PCC clustering algorithm, which relies on the assumption that

if S′ is sufficiently large and the clustering of S′ is correct, then the clustering

of the entire gene set is likely to to be correct.

The only problem is that the correct clustering of S′ is unknown! The way

around this is to generate all possible clusterings of S′, extend them into a

clustering of the entire gene set S, and select the resulting clustering with

the best clustering score. As attractive as it may sound, this is not practical

(unless S′ is very small) since the number of possible partitions of a set S′ into

k clusters is k|S′|. The PCC algorithm gets around this problem by making

S′ extremely small and generating all partitions of this set into k clusters.

It then extends each of these k|S′| partitions into a partition of the entire n-

element gene set by the two-stage procedure described below. The distance

graph G guides these extensions based on the maximal affinity approach.

The function score(P) is defined to be the number of edges necessary to add

or remove to turn G into a clique graph according to the partition P .9 The

PCC algorithm below clusters the set of elements S into k clusters according

to the graph G by extending partitions of subsets of S using the maximal

affinity approach:

PCC(G, k)

1 S ← set of vertices in the distance graph G

2 n← number of elements in S

3 bestScore←∞

4 Randomly select a “very small” set S′ ⊂ S, where |S′| = log log n

5 Randomly select a “small” set S′′ ⊂ (S \ S′), where |S′′| = log n.

6 for every partition P ′ of S′ into k clusters

7 Extend P ′ into a partition P ′′ of S′′

8 Extend P ′′ into a partition P of S

9 if score(P) < bestScore

10 bestScore← score(P)

11 bestPartition← P

12 return bestPartition

9. Computing this number is an easy (rather than NP-complete) problem, since we are given
P . To search for the minimum score without P , we would need to search over all partitions.

10.4 Clustering and Corrupted Cliques 353

The number of iterations that PCC requires is given by the number of par-

titions of set S′, which is k|S
′| = klog log n = (log n)log2 k = (log n)c. The

amount of work done in each iteration is O(n2), resulting in a running time

of O
(

n2(log n)c
)

. Since this is too slow for most applications, a more practi-

cal heuristic called CAST is often used.

Define the distance between gene i and cluster C as the average distance

between i and all genes in the cluster C: d(i, C) =
P

j∈C
d(i,j)

|C| . Given a thresh-

old θ, a gene i is close to cluster C if d(i, C) < θ and distant otherwise. The

CAST algorithm below clusters set S according to the distance graph G and

the threshold θ. CAST iteratively builds the partition P of the set S by find-

ing a cluster C such that no gene i 6∈ C is close to C, and no gene i ∈ C is

distant from C. In the beginning of the routine, P is initialized to an empty

set.

354 10 Clustering and Trees

CAST(G, θ)

1 S ← set of vertices in the distance graph G

2 P ← ∅

3 while S 6= ∅

4 v ← vertex of maximal degree in the distance graph G.

5 C ← {v}

6 while there exists a close gene i 6∈ C or distant gene i ∈ C

7 Find the nearest close gene i 6∈ C and add it to C.

8 Find the farthest distant gene i ∈ C and remove it from C.

9 Add cluster C to the partition P

10 S ← S \ C

11 Remove vertices of cluster C from the distance graph G

12 return P

Although CAST is a heuristic with no performance guarantee10 it per-

forms remarkably well with gene expression data.

10.5 Evolutionary Trees

In the past, biologists relied on morphological features, like beak shapes or

the presence or absence of fins to construct evolutionary trees. Today biol-

ogists rely on DNA sequences for the reconstruction of evolutionary trees.

Figure 10.7 represents a DNA-based evolutionary tree of bears and raccoons

that helped biologists to decide whether the giant panda belongs to the bear

family or the raccoon family. This question is not as obvious as it may at first

sound, since bears and raccoons diverged just 35 million years ago and they

share many morphological features.

For over a hundred years biologists could not agree on whether the giant

panda should be classified in the bear family or in the raccoon family. In 1870

an amateur naturalist and missionary, Père Armand David, returned to Paris

from China with the bones of the mysterious creature which he called simply

“black and white bear.” Biologists examined the bones and concluded that

they more closely resembled the bones of a red panda than those of bears.

Since red pandas were, beyond doubt, part of the raccoon family, giant pan-

das were also classified as raccoons (albeit big ones).

Although giant pandas look like bears, they have features that are unusual

for bears and typical of raccoons: they do not hibernate in the winter like

10. In fact, CAST may not even converge; see the problems at the end of the chapter.

10.5 Evolutionary Trees 355

other bears do, their male genitalia are tiny and backward-pointing (like rac-

coons’ genitalia), and they do not roar like bears but bleat like raccoons. As

a result, Edwin Colbert wrote in 1938:

So the quest has stood for many years with the bear proponents and the

raccoon adherents and the middle-of-the-road group advancing their

several arguments with the clearest of logic, while in the meantime the

giant panda lives serenely in the mountains of Szechuan with never a

thought about the zoological controversies he is causing by just being

himself.

The giant panda classification was finally resolved in 1985 by Steven O’Brien

and colleagues who used DNA sequences and algorithms, rather than be-

havioral and anatomical features, to resolve the giant panda controversy

(fig. 10.7). The final analysis demonstrated that DNA sequences provide an

important source of information to test evolutionary hypotheses. O’Brien’s

study used about 500,000 nucleotides to construct the evolutionary tree of

bears and raccoons.

Roughly at the same time that Steven O’Brien resolved the giant panda

controversy, Rebecca Cann, Mark Stoneking and Allan Wilson constructed

an evolutionary tree of humans and instantly created a new controversy. This

tree led to the Out of Africa hypothesis, which claims that humans have a

common ancestor who lived in Africa 200,000 years ago. This study turned

the question of human origins into an algorithmic puzzle.

The tree was constructed from mitochondrial DNA (mtDNA) sequences of

people of different races and nationalities.11 Wilson and his colleagues com-

pared sequences of mtDNA from people representing African, Asian, Aus-

tralian, Caucasian, and New Guinean ethnic groups and found 133 variants

of mtDNA. Next, they constructed the evolutionary tree for these DNA se-

quences that showed a trunk splitting into two major branches. One branch

consisted only of Africans, the other included some modern Africans and

some people from everywhere else. They concluded that a population of

Africans, the first modern humans, forms the trunk and the first branch of

the tree while the second branch represents a subgroup that left Africa and

later spread out to the rest of the world. All of the mtDNA, even samples

from regions of the world far away from Africa, were strikingly similar. This

11. Unlike the bulk of the genome, mitochondrial DNA is passed solely from a mother to her
children without recombining with the father’s DNA. Thus it is well-suited for studies of recent
human evolution. In addition, it quickly accumulates mutations and thus offers a quick-ticking
molecular clock.

356 10 Clustering and Trees

BROWN
BEAR

POLAR
BEAR

BLACK
BEAR

SPECTACLED
BEAR

GIANT
PANDA

RACCOON RED PANDA

40

35

30

25

20

15

10

5

0

M
il

li
o

n
s

o
f

y
ea

rs
ag

o

Figure 10.7 An evolutionary tree showing the divergence of raccoons and bears.
Despite their difference in size and shape, these two families are closely related.

10.5 Evolutionary Trees 357

suggested that our species is relatively young. But the African samples had

the most mutations, thus implying that the African lineage is the oldest and

that all modern humans trace their roots back to Africa. They further esti-

mated that modern man emerged from Africa 200,000 years ago with racial

differences arising only 50,000 years ago.

Shortly after Allan Wilson and colleagues constructed the human mtDNA

evolutionary tree supporting the Out of Africa hypothesis, Alan Templeton

constructed 100 distinct trees that were also consistent with data that pro-

vide evidence against the African origin hypothesis! This is a cautionary tale

suggesting that one should proceed carefully when constructing large evolu-

tionary trees12 and below we describe some algorithms for evolutionary tree

reconstruction.

Biologists use either unrooted or rooted evolutionary trees;13 the difference

between them is shown in figure 10.8. In a rooted evolutionary tree, the

root corresponds to the most ancient ancestor in the tree, and the path from

the root to a leaf in the rooted tree is called an evolutionary path. Leaves

of evolutionary trees correspond to the existing species while internal ver-

tices correspond to hypothetical ancestral species.14 In the unrooted case, we

do not make any assumption about the position of an evolutionary ancestor

(root) in the tree. We also remark that rooted trees (defined formally as undi-

rected graphs) can be viewed as directed graphs if one directs the edges of

the rooted tree from the root to the leaves.

Biologists often work with binary weighted trees where every internal ver-

tex has degree equal to 3 and every edge has an assigned positive weight

(sometimes referred to as the length). The weight of an edge (v, w) may reflect

the number of mutations on the evolutionary path from v to w or a time esti-

mate for the evolution of species v into species w. We sometimes assume the

existence of a molecular clock that assigns a time t(v) to every internal vertex

v in the tree and a length of t(w) − t(v) to an edge (v, w). Here, time corre-

sponds to the “moment” when the species v produced its descendants; every

leaf species corresponds to time 0 and every internal vertex presumably cor-

responds to some negative time.

12. Following advances in tree reconstruction algorithms, the critique of the Out of Africa hy-
pothesis has diminished in recent years and the consensus today is that this hypothesis is prob-
ably correct.
13. We remind the reader that trees are undirected connected graphs that have no cycles. Ver-
tices of degree 1 in the tree are called leaves. All other vertices are called internal vertices.
14. In rare cases like quickly evolving viruses or bacteria, the DNA of ancestral species is avail-
able (e.g., as a ten- to twenty-year-old sample stored in refrigerator) thus making sequences of
some internal vertices real rather than hypothetical.

358 10 Clustering and Trees

(a) Unrooted
tree

(b) Rooted tree (c) The
same
rooted tree

Figure 10.8 The difference between unrooted (a) and rooted (b) trees. These both
describe the same tree, but the unrooted tree makes no assumption about the origin
of species. Rooted trees are often represented with the root vertex on the top (c),
emphasizing that the root corresponds to the ancestral species.

2 3 4

5

1 6

12

13

12

13

14
16

17

13

12

Figure 10.9 A weighted unrooted tree. The length of the path between any two
vertices can be calculated as the sum of the weights of the edges in the path between
them. For example, d(1, 5) = 12 + 13 + 14 + 17 + 12 = 68.

10.6 Distance-Based Tree Reconstruction

If we are given a weighted tree T with n leaves, we can compute the length

of the path between any two leaves i and j, di,j(T) (fig. 10.9). Evolutionary

biologists often face the opposite problem: they measure the n × n distance

matrix (Di,j), and then must search for a tree T that has n leaves and fits

10.6 Distance-Based Tree Reconstruction 359

i j

c

k

di,c

dk,c

dj,c

D
i,k

Di,j

D
j,

k

Figure 10.10 A tree with three leaves.

the data,15 that is, di,j(T) = Di,j for every two leaves i and j. There are

many ways to generate distance matrices: for example, one can sequence a

particular gene in n species and define Di,j as the edit distance between this

gene in species i and species j.

It is not difficult to construct a tree that fits any given 3 × 3 (symmetric

non-negative) matrix D. This binary unrooted tree has four vertices i, j, k as

leaves and vertex c as the center. The lengths of each edge in the tree are

defined by the following three equations with three variables di,c, dj,c, and

dk,c (fig. 10.10):

di,c + dj,c = Di,j di,c + dk,c = Di,k dj,c + dk,c = Dj,k.

The solution is given by

di,c =
Di,j + Di,k −Dj,k

2
dj,c =

Dj,i + Dj,k −Di,k

2
dk,c =

Dk,i + Dk,j −Di,j

2
.

An unrooted binary tree with n leaves has 2n − 3 edges, so fitting a given

tree to an n× n distance matrix D leads to solving a system of
(

n
2

)

equations

with 2n − 3 variables. For n = 4 this amounts to solving six equations with

only five variables. Of course, it is not always possible to solve this system,

15. We assume that all matrices in this chapter are symmetric, that is, that they satisfy the con-
ditions Di,j = Dj,i and Di,j ≥ 0 for all i and j. We also assume that the distance matrices
satisfy the triangle inequality, that is, Di,j + Dj,k ≥ Di,k for all i, j, and k.

360 10 Clustering and Trees

A B C D

A 0 2 4 4
B 2 0 4 4
C 4 4 0 2
D 4 4 2 0

A C

B D

1

1

1

1

2

(a) Additive matrix and the corresponding
tree

A B C D

A 0 2 2 2
B 2 0 3 2
C 2 3 0 2
D 2 2 2 0

?

(b) Non-additive matrix

Figure 10.11 Additive and nonadditive matrices.

making it hard or impossible to construct a tree from D. A matrix (Di,j)

is called additive if there exists a tree T with di,j(T) = Di,j , and nonadditive

otherwise (fig. 10.11).

Distance-Based Phylogeny Problem:

Reconstruct an evolutionary tree from a distance matrix.

Input: An n× n distance matrix (Di,j).

Output: A weighted unrooted tree T with n leaves fitting D,

that is, a tree such that di,j(T) = Di,j for all 1 ≤ i < j ≤ n if

(Di,j) is additive.

10.7 Reconstructing Trees from Additive Matrices 361

Figure 10.12 If i and j are neighboring leaves and k is their parent, then Dk,m =
Di,m+Dj,m−Di,j

2
for every other vertex m in the tree.

The Distance-Based Phylogeny problem may not have a solution, but if it

does—that is, if D is additive—there exists a simple algorithm to solve it. We

emphasize the fact that we are somehow given the matrix of evolutionary

distances between each pair of species, and we are searching for both the

shape of the tree that fits this distance matrix and the weights for each edge

in the tree.

10.7 Reconstructing Trees from Additive Matrices

A “simple” way to solve the Distance-Based Phylogeny problem for additive

trees16 is to find a pair of neighboring leaves, that is, leaves that have the same

parent vertex.17 Figure 10.12 illustrates that for a pair of neighboring leaves i

and j and their parent vertex k, the following equality holds for every other

leaf m in the tree:

Dk,m =
Di,m + Dj,m −Di,j

2

Therefore, as soon as a pair of neighboring leaves i and j is found, one can

remove the corresponding rows and columns i and j from the distance ma-

trix and add a new row and column corresponding to their parent k. Since

the distance matrix is additive, the distances from k to other leaves are re-

computed as Dk,m =
Di,m+Dj,m−Di,j

2 . This transformation leads to a sim-

ple algorithm for the Distance-Based Phylogeny problem that finds a pair of

neighboring leaves and reduces the size of the tree at every step.

One problem with the described approach is that it is not very easy to find

neighboring leaves! One might be tempted to think that a pair of closest

16. To be more precise, we mean an “additive matrix,” rather than an “additive tree”; the term
“additive” applies to matrices. We use the term “additive trees” only because it dominates the

362 10 Clustering and Trees

Figure 10.13 The two closest leaves (j and k) are not neighbors in this tree.

leaves (i.e., the leaves i and j with minimum Di,j) would represent a pair

of neighboring leaves, but a glance at figure 10.13 will show that this is not

true. Since finding neighboring leaves using only the distance matrix is a

nontrivial problem, we postpone exploring this until the next section and

turn to another approach.

Figure 10.14 illustrates the process of shortening all “hanging” edges of

a tree T , that is, edges leading to leaves. If we reduce the length of every

hanging edge by the same small amount δ, then the distance matrix of the

resulting tree is (di,j − 2δ) since the distance between any two leaves is re-

duced by 2δ. Sooner or later this process will lead to “collapsing” one of the

leaves when the length of the corresponding hanging edge becomes equal to

0 (when δ is equal to the length of the shortest hanging edge). At this point,

the original tree T = Tn with n leaves will be transformed into a tree Tn−1

with n− 1 or fewer leaves.

Although the distance matrix D does not explicitly contain information

about δ, it is easy to derive both δ and the location of the collapsed leaf in

Tn−1 by the method described below. Thus, one can perform a series of tree

transformations Tn → Tn−1 → . . . → T3 → T2, then construct the tree T2

(which is easy, since it consists of only a single edge), and then perform a

series of reverse transformations T2 → T3 → . . . → Tn−1 → Tn recovering

information about the collapsed edges at every step (fig. 10.14)

A triple of distinct elements 1 ≤ i, j, k ≤ n is called degenerate if Di,j +

Dj,k = Di,k, which is essentially just an indication that j is located on the

path from i to k in the tree. If D is additive, Di,j +Dj,k ≥ Di,k for every triple

i, j, k. We call the entire matrix D degenerate if it has at least one degenerate

triple. If (i, j, k) is a degenerate triple, and some tree T fits matrix D, then the

literature on evolutionary tree reconstruction.
17. Showing that every binary tree has neighboring leaves is left as a problem at the end of this
chapter.

10.7 Reconstructing Trees from Additive Matrices 363

A B C D
A 0 4 10 9
B 4 0 8 7
C 10 8 0 9
D 9 7 9 0

A C

B D

3 2

4

5

1

δ = 1

A B C D
A 0 2 8 7
B 2 0 6 5
C 8 6 0 7
D 7 5 7 0

i ← A
j ← B
k ← C

A C

B D

2 2

3

4

0

A C D
A 0 8 7
C 8 0 7
D 7 7 0

A C

D

4

3

4

δ = 3

A C D
A 0 2 1
C 2 0 1
D 1 1 0

i ← A
j ← D
k ← C

A C

D

1

0

1

A C
A 0 2
C 2 0

A C
2

Figure 10.14 The iterative process of shortening the hanging edges of a tree.

364 10 Clustering and Trees

vertex j should lie somewhere on the path between i and k in T .18 Another

way to state this is that j is attached to this path by an edge of weight 0, and

the attachment point for j is located at distance Di,j from vertex i. There-

fore, if an n × n additive matrix D has a degenerate triple, then it will be

reduced to an (n − 1) × (n − 1) additive matrix by simply excluding vertex

j from consideration; the position of j will be recovered during the reverse

transformations. If the matrix D does not have a degenerate triple, one can

start reducing the values of all elements in D by the same amount 2δ until

the point at which the distance matrix becomes degenerate for the first time

(i.e., δ is the minimum value for which (Di,j − 2δ) has a degenerate triple for

some i and j). Determining how to calculate the minimum value of δ (called

the trimming parameter) is left as a problem at the end of this chapter. Though

you do not have the tree T , this operation corresponds to shortening all of

the hanging edges in T by δ until one of the leaves ends up on the evolution-

ary path between two other leaves for the first time. This intuition motivates

the following recursive algorithm for finding the tree that fits the data.

ADDITIVEPHYLOGENY(D)

1 if D is a 2× 2 matrix

2 T ← the tree consisting of a single edge of length D1,2.

3 return T

4 if D is non-degenerate

5 δ ← trimming parameter of matrix D

6 for all 1 ≤ i 6= j ≤ n

7 Di,j ← Di,j − 2δ

8 else

9 δ ← 0

10 Find a triple i, j, k in D such that Dij + Djk = Dik

11 x← Di,j

12 Remove jth row and jth column from D.

13 T ← ADDITIVEPHYLOGENY(D)

14 Add a new vertex v to T at distance x from i to k

15 Add j back to T by creating an edge (v, j) of length 0

16 for every leaf l in T

17 if distance from l to v in the tree T does not equal Dl,j

18 output “Matrix D is not additive”

19 return

20 Extend hanging edges leading to all leaves by δ

21 return T

18. To be more precise, vertex j partitions the path from i to k into paths of length Di,j and
Dj,k .

10.7 Reconstructing Trees from Additive Matrices 365

Figure 10.15 Representing three sums in a tree with 4 vertices.

The ADDITIVEPHYLOGENY algorithm above provides a way to check if

the matrix D is additive. While this algorithm is intuitive and simple, it

is not the most efficient way to construct additive trees. Another way to

check additivity is by using the following “four-point condition”. Let 1 ≤

i, j, k, l ≤ n be four distinct indices. Compute 3 sums: Di,j +Dk,l, Di,k +Dj,l,

and Di,l + Dj,k. If D is an additive matrix then these three sums can be

represented by a tree with four leaves (fig. 10.15). Moreover, two of these

sums represent the same number (the sum of lengths of all edges in the tree

plus the length of the middle edge) while the third sum represents another

smaller number (the sum of lengths of all edges in the tree minus the length

of the middle edge). We say that elements 1 ≤ i, j, k, l ≤ n satisfy the four-

point condition if two of the sums Di,j + Dk,l, Di,k + Dj,l, and Di,l + Dj,k are

the same, and the third one is smaller than these two.

Theorem 10.1 An n×n matrix D is additive if and only if the four point condition

holds for every 4 distinct elements 1 ≤ i, j, k, l ≤ n.

If the distance matrix D is not additive, one might want instead to find

a tree that approximates D using the sum of squared errors
∑

i,j(di,j(T) −

Di,j)
2 as a measure of the quality of the approximation. This leads to the

(NP-hard) Least Squares Distance-Based Phylogeny problem:

366 10 Clustering and Trees

Least Squares Distance-Based Phylogeny Problem:

Given a distance matrix, find the evolutionary tree that minimizes

squared error.

Input: An n× n distance matrix (Di,j)

Output: A weighted tree T with n leaves minimizing
∑

i,j(di,j(T)−Di,j)
2 over all weighted trees with n leaves.

10.8 Evolutionary Trees and Hierarchical Clustering

Biologists often use variants of hierarchical clustering to construct evolution-

ary trees. UPGMA (Unweighted Pair Group Method with Arithmetic Mean) is a

particularly simple clustering algorithm. The UPGMA algorithm is a vari-

ant of HIERARCHICALCLUSTERING that uses a different approach to com-

pute the distance between clusters, and assigns heights to vertices of the con-

structed tree. Thus, the length of an edge (u, v) is defined to be the difference

in heights of the vertices v and u. The height plays the role of the molecular

clock, and allows one to “date” the divergence point for every vertex in the

evolutionary tree.

Given clusters C1 and C2, UPGMA defines the distance between them to

be the average pairwise distance: D(C1, C2) = 1
|C1||C2|

∑

i∈C1

∑

j∈C2
D(i, j).

At heart, UPGMA is simply another hierarchical clustering algorithm that

“dates” vertices of the constructed tree.

UPGMA(D, n)

1 Form n clusters, each with a single element

2 Construct a graph T by assigning an isolated vertex to each cluster

3 Assign height h(v) = 0 to every vertex v in this graph

4 while there is more than one cluster

5 Find the two closest clusters C1 and C2

6 Merge C1 and C2 into a new cluster C with |C1|+ |C2| elements

7 for every cluster C∗ 6= C

8 D(C, C∗) = 1
|C|·|C∗|

∑

i∈C

∑

j∈C∗ D(i, j)

9 Add a new vertex C to T and connect to vertices C1 and C2

10 h(C)← D(C1,C2)
2

11 Assign length h(C)− h(C1) to the edge (C1, C)

12 Assign length h(C)− h(C2) to the edge (C2, C)

13 Remove rows and columns of D corresponding to C1 and C2

14 Add a row and column to D for the new cluster C

15 return T

10.8 Evolutionary Trees and Hierarchical Clustering 367

UPGMA produces a special type of rooted tree19 that is known as ultra-

metric. In ultrametric trees the distance from the root to any leaf is the same.

We can now return to the “neighboring leaves” idea that we developed

and then abandoned in the previous section. In 1987 Naruya Saitou and

Masatoshi Nei developed an ingenious neighbor joining algorithm for phylo-

genetic tree reconstruction. In the case of additive trees, the neighbor joining

algorithm somehow magically finds pairs of neighboring leaves and pro-

ceeds by substituting such pairs with the leaves’ parent. However, neighbor

joining works well not only for additive distance matrices but for many oth-

ers as well: it does not assume the existence of a molecular clock and ensures

that the clusters that are merged in the course of tree reconstruction are not

only close to each other (as in UPGMA) but also are far apart from the rest.

For a cluster C, define u(C) = 1
number of clusters−2

∑

all clusters C′ D(C, C′) as a

measure of the separation of C from other clusters.20 To choose which two

clusters to merge, we look for the clusters C1 and C2 that are simultaneously

close to each other and far from others. One may try to merge clusters that

simultaneously minimize D(C1, C2) and maximize u(C1)+ u(C2). However,

it is unlikely that a pair of clusters C1 and C2 that simultaneously minimize

D(C1, C2) and maximize u(C1) + u(C2) exists. As an alternative, one opts to

minimize D(C1, C2) − u(C1) − u(C2). This approach is used in the NEIGH-

BORJOINING algorithm below.

NEIGHBORJOINING(D, n)

1 Form n clusters, each with a single element

2 Construct a graph T by assigning an isolated vertex to each cluster

3 while there is more than one cluster

4 Find clusters C1 and C2 minimizing D(C1, C2)− u(C1)− u(C2)

5 Merge C1 and C2 into a new cluster C with |C1|+ |C2| elements

6 Compute D(C, C∗) = D(C1,C)+D(C2,C)
2 to every other cluster C∗

7 Add a new vertex C to T and connect it to vertices C1 and C2

8 Assign length 1
2D(C1, C2) + 1

2 (u(C1)− u(C2)) to the edge (C1, C)

9 Assign length 1
2D(C1, C2) + 1

2 (u(C2)− u(C1)) to the edge (C2, C)

10 Remove rows and columns of D corresponding to C1 and C2

11 Add a row and column to D for the new cluster C

12 return T

19. Here, the root corresponds to the cluster created last.
20. The explanation of that mysterious term “number of clusters − 2” in this formula is beyond
the scope of this book.

368 10 Clustering and Trees

10.9 Character-Based Tree Reconstruction

Evolutionary tree reconstruction often starts by sequencing a particular gene

in each of n species. After aligning these genes, biologists end up with an

n × m alignment matrix (n species, m nucleotides in each) that can be fur-

ther transformed into an n×n distance matrix. Although the distance matrix

could be analyzed by distance-based tree reconstruction algorithms, a cer-

tain amount of information gets lost in the transformation of the alignment

matrix into the distance matrix, rendering the reverse transformation of dis-

tance matrix back into the alignment matrix impossible. A better technique

is to use the alignment matrix directly for evolutionary tree reconstruction.

Character-based tree reconstruction algorithms assume that the input data are

described by an n×m matrix (perhaps an alignment matrix), where n is the

number of species and m is the number of characters. Every row in the matrix

describes an existing species and the goal is to construct a tree whose leaves

correspond to the n existing species and whose internal vertices correspond

to ancestral species. Each internal vertex in the tree is labeled with a charac-

ter string that describes, for example, the hypothetical number of legs in that

ancestral species. We want to determine what character strings at internal

nodes would best explain the character strings for the n observed species.

The use of the word “character” to describe an attribute of a species is

potentially confusing, since we often use the word to refer to letters from

an alphabet. We are not at liberty to change the terminology that biologists

have been using for at least a century, so for the next section we will re-

fer to nucleotides as states of a character. Another possible character might

be “number of legs,” which is not very informative for mammalian evolu-

tionary studies, but could be somewhat informative for insect evolutionary

studies.

An intuitive score for a character-based evolutionary tree is the total num-

ber of mutations required to explain all of the observed character sequences.

The parsimony approach attempts to minimize this score, and follows the

philosophy of Occam’s razor: find the simplest explanation of the data (see

figure 10.16).21

21. Occam was one of the most influential philosophers of the fourteenth century. Strong op-
position to his ideas from theology professors prevented him from obtaining his masters degree
(let alone his doctorate). Occam’s razor states that “plurality should not be assumed without
necessity,” and is usually paraphrased as “keep it simple, stupid.” Occam used this principle to
eliminate many pseudoexplanatory theological arguments. Though the parsimony principle is
attributed to Occam, sixteen centuries earlier Aristotle wrote simply that Nature operates in the
shortest way possible.

10.9 Character-Based Tree Reconstruction 369

1 1

0 1 0 0

1 0

1 0 0 0

Parsimony Score=3 Parsimony Score=2(a) (b)

Figure 10.16 If we label a tree’s leaves with characters (in this case, eyebrows and
mouth, each with two states), and choose labels for each internal vertex, we implicitly
create a parsimony score for the tree. By changing the labels in (a) we are able to create
a tree with a better parsimony score in (b).

Given a tree T with every vertex labeled by an m-long string of characters,

one can set the length of an edge (v, w) to the Hamming distance dH(v, w)

between the character strings for v and w. The parsimony score of a tree T is

simply the sum of lengths of its edges
∑

All edges (v,w) of the tree dH(v, w). In

reality, the strings of characters assigned to internal vertices are unknown

and the problem is to find strings that minimize the parsimony score.

Two particular incarnations of character-based tree reconstruction are the

Small Parsimony problem and the Large Parsimony problem. The Small Par-

simony problem assumes that the tree is given but the labels of its internal

vertices are unknown, while the vastly more difficult Large Parsimony prob-

lem assumes that neither the tree structure nor the labels of its internal ver-

tices are known.

370 10 Clustering and Trees

10.10 Small Parsimony Problem

Small Parsimony Problem:

Find the most parsimonious labeling of the internal vertices in an

evolutionary tree.

Input: Tree T with each leaf labeled by an m-character

string.

Output: Labeling of internal vertices of the tree T minimiz-

ing the parsimony score.

An attentive reader should immediately notice that, because the characters

in the string are independent, the Small Parsimony problem can be solved

independently for each character. Therefore, to devise an algorithm, we can

assume that every leaf is labeled by a single character rather than by a string

of m characters.

As we have seen in previous chapters, sometimes solving a more general—

and seemingly more difficult—problem may reveal the solution to the more

specific one. In the case of the Small Parsimony Problem we will first solve

the more general Weighted Small Parsimony problem, which generalizes the

notion of parsimony by introducing a scoring matrix. The length of an edge

connecting vertices v and w in the Small Parsimony problem is defined as the

Hamming distance, dH(v, w), between the character strings for v and w. In

the case when every leaf is labeled by a single character in a k-letter alphabet,

dH(v, w) = 0 if the characters corresponding to v and w are the same, and

dH(v, w) = 1 otherwise. One can view such a scoring scheme as a k × k

scoring matrix (δi,j) with diagonal elements equal to 0 and all other elements

equal to 1. The Weighted Small Parsimony problem simply assumes that the

scoring matrix (δi,j) is an arbitrary k× k matrix and minimizes the weighted

parsimony score
∑

all edges (v, w) in the tree δv,w.

Weighted Small Parsimony Problem:

Find the minimal weighted parsimony score labeling of the internal

vertices in an evolutionary tree.

Input: Tree T with each leaf labeled by elements of a k-letter

alphabet and a k × k scoring matrix (δij).

Output: Labeling of internal vertices of the tree T minimiz-

ing the weighted parsimony score.

10.10 Small Parsimony Problem 371

v

u w

Figure 10.17 A subtree of a larger tree. The shaded vertices form a tree rooted at the
topmost shaded node.

In 1975 David Sankoff came up with the following dynamic programming

algorithm for the Weighted Small Parsimony problem. As usual in dynamic

programming, the Weighted Small Parsimony problem for T is reduced to

solving the Weighted Small Parsimony Problem for smaller subtrees of T . As

we mentioned earlier, a rooted tree can be viewed as a directed tree with all

of its edges directed away from the root toward the leaves. Every vertex v in

the tree T defines a subtree formed by the vertices beneath v (fig. 10.17), which

are all of the vertices that can be reached from v. Let st(v) be the minimum

parsimony score of the subtree of v under the assumption that vertex v has

character t. For an internal vertex v with children u and w, the score st(v)

can be computed by analyzing k scores si(u) and k scores si(w) for 1 ≤ i ≤ k

(below, i and j are characters):

st(v) = min
i
{si(u) + δi,t}+ min

j
{sj(w) + δj,t}

The initial conditions simply amount to an assignment of the scores st(v)

at the leaves according to the rule: st(v) = 0 if v is labeled by letter t and

st(v) = ∞ otherwise. The minimum weighted parsimony score is given by

the smallest score at the root, st(r) (fig. 10.18). Given the computed values

372 10 Clustering and Trees

st(v) at all of the vertices in the tree, one can reconstruct an optimal assign-

ment of labels using a backtracking approach that is similar to that used in

chapter 6. The running time of the algorithm is O(nk).

In 1971, even before David Sankoff solved the Weighted Small Parsimony

problem, Walter Fitch derived a solution of the (unweighted) Small Parsi-

mony problem. The Fitch algorithm below is essentially dynamic program-

ming in disguise. The algorithm assigns a set of letters Sv to every vertex in

the tree in the following manner. For each leaf v, Sv consists of single letter

that is the label of this leaf. For any internal vertex v with children u and w,

Sv is computed from the sets Su and Sw according to the following rule:

Sv =

{

Su ∩ Sw, if Su and Sw overlap

Su ∪ Sw, otherwise

To compute Sv, we traverse the tree in post-order as in figure 10.19, starting

from the leaves and working toward the root. After computing Sv for all

vertices in the tree, we need to decide on how to assign letters to the internal

vertices of the tree. This time we traverse the tree using preorder traversal

from the root toward the leaves. We can assign root r any letter from Sr. To

assign a letter to an internal vertex v we check if the (already assigned) label

of its parent belongs to Sv. If yes, we choose the same label for v; otherwise

we label v by an arbitrary letter from Sv (fig. 10.20). The running time of this

algorithm is also O(nk).

At first glance, Fitch’s labeling procedure and Sankoff’s dynamic program-

ming algorithm appear to have little in common. Even though Fitch probably

did not know about application of dynamic programming for evolutionary

tree reconstruction in 1971, the two algorithms are almost identical. To reveal

the similarity between these two algorithms let us return to Sankoff’s recur-

rence. We say that character t is optimal for vertex v if it yields the smallest

score, that is, if st(v) = min1≤i≤k si(v). The set of optimal letters for a ver-

tex v forms a set S(v). If u and w are children of v and if S(u) and S(w)

overlap, then it is easy to see that S(v) = S(u)
⋂

S(w). If S(u) and S(w) do

not overlap, then it is easy to see that S(v) = S(u)
⋃

S(w). Fitch’s algorithm

uses exactly the same recurrence, thus revealing that these two approaches

are algorithmic twins.

10.10 Small Parsimony Problem 373

δ A T G C
A 0 3 4 9
T 3 0 2 4
G 4 2 0 4
C 9 4 4 0

0 ∞ ∞ ∞

A T G C

∞ ∞ ∞ 0

A T G C

∞ 0 ∞ ∞

A T G C

∞ ∞ 0 ∞

A T G C

9 7 8 9

A T G C

0 ∞ ∞ ∞

A T G C

∞ ∞ ∞ 0

A T G C

7 2 2 8

A T G C

∞ 0 ∞ ∞

A T G C

∞ ∞ 0 ∞

A T G C

T

14 9 10 15

A T G C

T

9 7 8 9

A T G C

A

0 ∞ ∞ ∞

A T G C

3

C

∞ ∞ ∞ 0

A T G C

4

T

7 2 2 8

A T G C

T

∞ 0 ∞ ∞

A T G C

G

∞ ∞ 0 ∞

A T G C

2

Figure 10.18 An illustration of Sankoff’s algorithm. The leaves of the tree are labeled
by A, C, T, G in order. The minimum weighted parsimony score is given by sT(root) =
0 + 0 + 3 + 4 + 0 + 2 = 9.

374 10 Clustering and Trees

1

2

3 4

5

6 7

(a)

4

2

1 3

6

5 7

(b)

7

3

1 2

6

4 5

(c)

Figure 10.19 Three methods of traversing a tree. (a) Pre-order: SELF, LEFT, RIGHT.
(b) In-order: LEFT, SELF, RIGHT. (c) Post-order: LEFT, RIGHT, SELF.

10.11 Large Parsimony Problem

Large Parsimony Problem:

Find a tree with n leaves having the minimal parsimony score.

Input: An n×m matrix M describing n species, each repre-

sented by an m-character string.

Output: A tree T with n leaves labeled by the n rows of

matrix M , and a labeling of the internal vertices of this tree

such that the parsimony score is minimized over all possible

trees and over all possible labelings of internal vertices.

Not surprisingly, the Large Parsimony problem is NP-complete. In the

case n is small, one can explore all tree topologies with n leaves, solve the

Small Parsimony problem for each topology, and select the best one. How-

ever, the number of topologies grows very fast with respect to n, so biologists

often use local search heuristics (e.g., greedy algorithms) to navigate in the

space of all topologies. Nearest neighbor interchange is a local search heuristic

that defines neighbors in the space of all trees.22 Every internal edge in a tree

defines four subtrees A, B, C, and D (fig. 10.21) that can be combined into a

22. “Nearest neighbor” has nothing to do with the two closest leaves in the tree.

10.11 Large Parsimony Problem 375

{A} {C} {G} {G}

{A, C}

{A} {C}

{G}

{G} {G}

{A, C, G}

{A, C}

{A} {C}

{G}

{G} {G}

A

A

A C

G

G G

A

A G

A

Figure 10.20 An illustration of Fitch’s algorithm.

376 10 Clustering and Trees

A

B

C

D

AB|CD

A

C

B

D

AC|BD

A

D

B

C

AD|BC

Figure 10.21 Three ways of combining the four subtrees defined by an internal edge.

tree in three different ways that we denote AB|CD, AC|BD, and AD|BC.

These three trees are called neighbors under the nearest neighbor interchange

transformation. Figure 10.22 shows all trees with five leaves and connects

two trees if they are neighbors. Figure 10.23 shows two nearest neighbor in-

terchanges that transform one tree into another. A greedy approach to the

Large Parsimony problem is to start from an arbitrary tree and to move (by

nearest neighbor interchange) from one tree to another if such a move pro-

vides the best improvement in the parsimony score among all neighbors of

the tree T .

10.11 Large Parsimony Problem 377

1 2 3 4 5

A

B�D

��

C E

A

B�C

��

D E

A

B�C

��

E D

B

A	D

�

C E

B

A�C

�

D E

6 7 8 9 10

B

A�D

��

E C

C

A�D

��

B E

C

A�B

��

D E

C

A�B

��

E D

D

A�C

��

B E

11 12 13 14 15

D

A�B

�

C E

D

A!B

"#

E C

E

A$C

%&

B D

E

A'B

()

C D

E

A*B

+,

D C

(a) All 5-leaf binary trees

2

1

3

14

9

5

10

11

4

7

13

8

15

12

6

2

1

3
14

9

5

10

11

4

7

13

8

15

12

6

(b) Stereo projection of graph of trees

Figure 10.22 (a) All unrooted binary trees with five leaves. (b) These can also be
considered to be vertices in a graph; two vertices are connected if and only if their re-
spective trees are interchangeable by a single nearest neighbor interchange operation.
Shown is a three dimensional view of the graph as a stereo representation.

378 10 Clustering and Trees

C D

B E

A F

B A E

D F

C

B F E

D A

C

Figure 10.23 Two trees that are two nearest neighbor interchanges apart.

10.12 Notes 379

10.12 Notes

The literature on clustering can be traced back to the nineteenth century. The

k-Means clustering algorithm was introduced by Stuart Lloyd in 1957 (68),

popularized by MacQueen in 1965 (70), and has since inspired dozens of

variants. Applications of hierarchical clustering for gene expression analyses

were pioneered by Michael Eisen, Paul Spellman, Patrick Brown and David

Botstein in 1998 (33). The PCC and CAST algorithms were developed by

Amir Ben-Dor, Ron Shamir, and Zohar Yakhini in 1999 (11).

The molecular solution of the giant panda riddle was proposed by Stephen

O’Brien and colleagues in 1985 (81) and described in more details in O’Brien’s

book (80). The Out of Africa hypothesis was proposed by Rebecca Cann,

Mark Stoneking, and Allan Wilson in 1987. Even today it continues to be

debated by Alan Templeton and others (103).

The simple and intuitive UPGMA hierarchical clustering approach was

developed in 1958 by Charles Michener and Robert Sokal (98). The neighbor

joining algorithm was developed by Naruya Saitou and Masatoshi Nei in

1987 (90).

The algorithm to solve the Small Parsimony problem was developed by

Walter Fitch in 1971 (37), four years before David Sankoff developed a dy-

namic programming algorithm for the more general Weighted Small Parsi-

mony problem (92). The four-point condition was first formulated in 1965

(113), promptly forgotten, and rediscovered by Peter Buneman six years later (19).

The nearest neighbor interchange approach to exploring trees was proposed

in 1971 by David Robinson (88).

380 10 Clustering and Trees

Ron Shamir (born 1953 in Jerusalem)

is a professor at the School of Computer

Science at Tel Aviv University. He holds

an undergraduate degree in mathemat-

ics and physics from Hebrew Univer-

sity, Jerusalem and a PhD in operations

research from the University of Califor-

nia at Berkeley. He was a pioneer in

the application of sophisticated graph-

theoretical techniques in bioinformatics.

Shamir’s interests have always revolved

around the design and analysis of al-

gorithms and his PhD dissertation was

on studies of linear programming algo-

rithms. Later he developed a keen inter-

est in graph algorithms that eventually

brought him (in a roundabout way) to computational biology. Back in 1990

Shamir was collaborating with Martin Golumbic on problems related to tem-

poral reasoning. In these problems, one has a set of events, each modeled by

an unknown interval on the timeline, and a collection of constraints on the

relations between each two events, for example, whether two intervals over-

lap or not. One has to determine if there exists a realization of the events as

intervals on the line, satisfying all the constraints. This is a generalization

of the problem that Seymour Benzer faced trying to establish the linearity of

genes, but at the time Shamir did not know about Benzer’s work. He says:

I presented my work on temporal reasoning at a workshop in 1990

and the late Gene Lawler told me this model fits perfectly the DNA

mapping problem. I knew nothing about DNA at the time but started

reading, and I also sent a note to Eric Lander describing the temporal

reasoning result with the mapping consequences. A few weeks later

Rutgers University organized a kickoff day on computational biology

and brought Mike Waterman and Eric Lander who gave fantastic talks

on the genome project and the computational challenges. Eric even

mentioned our result as an important example of computer science

contribution to the field. I think he was exaggerating quite a bit on

this point, but the two talks sent me running to read biology textbooks

and papers. I got a lot of help during the first years from my wife

10.12 Notes 381

Michal, who happens to be a biologist and patiently answered all my

trivial questions.

This chance meeting with Gene Lawler and Eric Lander converted Shamir

into a bioinformatician and since 1991 he has been devoting more and more

time to algorithmic problems in computational biology. He still keeps an

interest in graph algorithms and often applies graph-theoretical techniques

to biological problems. In recent years, he has tended to combine discrete

mathematics techniques and probabilistic reasoning. Ron says:

I still worry about the complexity of the problems and the algorithms,

and would care about (and enjoy) the NP-hardness proof of a new

problem, but biology has trained me to be “tolerant” to heuristics when

the theoretical computer science methodologies only take you so far,

and the data require more.

Shamir was an early advocate of rigorous clustering algorithms in bioin-

formatics. Although clustering theory has been under development since the

1960s, his interest in clustering started in the mid-1990s as part of a collabora-

tion with Hans Lehrach of the Max Planck Institute in Berlin. Lehrach is one

of the fathers of the oligonucleotide fingerprinting technology that predates

the DNA chips techniques. Lehrach had a “factory” in Berlin that would

array thousands of unknown cDNA clones, and then hybridize them to k-

mer probes (typically 8-mers or 9-mers). This was repeated with dozens of

different probes, giving a fingerprint for each cDNA clone. To find which

clones correspond to the same gene, one has to cluster them based on their

fingerprints, and the noise level in the data makes accurate clustering quite

a challenge.

It was this challenge that brought Shamir to think about clustering. As

clustering theory is very heterogeneous and scattered over many different

fields, he set out to develop his algorithm first, before learning the literature.

Naturally, Shamir resorted to graph algorithms, modeled the clustered ele-

ments (clones in the fingerprinting application) as vertices, and connected

clones with highly similar fingerprints by edges. It was a natural next step to

repeatedly partition the graph based on minimum cuts (sets of edges whose

removal makes the graph disconnected) and hence his first clustering algo-

rithm was born. Actually the idea looked so natural to Shamir that he and

his student Erez Hartuv searched the literature for a long time just to make

sure it had not been published before. They did not find the same approach

382 10 Clustering and Trees

but found similar lines of thinking in works a decade earlier. According to

Shamir,

Given the ubiquity of clustering, I would not be surprised to unearth

in the future an old paper with the same idea in archeology, zoology,

or some other field.

Later, after considering the pros and cons of the approach, together with

his student Roded Sharan, Shamir improved the algorithm by adding a rig-

orous probabilistic analysis and created the popular clustering algorithm

CLICK. The publication of vast data sets of microarray expression profiles

was a great opportunity and triggered Shamir to further develop PCC and

CAST together with Amir Ben-Dor and Zohar Yakhini.

Shamir is one of the very few scientists who is regarded as a leader in

both algorithms and bioinformatics and who was credited with an important

breakthrough in algorithms even before he became a bioinformatician. He

says:

Probably the most exciting moment in my scientific life was my PhD re-

sult in 1983, showing that the average complexity of the Simplex algo-

rithm is quadratic. The Simplex algorithm is one of the most commonly

used algorithms, with thousands of applications in virtually all areas

of science and engineering. Since the 1950s, the Simplex algorithm was

known to be very efficient in practice and was (and is) used ubiqui-

tously, but worst-case exponential-time examples were given for many

variants of the Simplex, and none was proved to be efficient. This was

a very embarrassing situation, and resolving it was very gratifying.

Doing it together with my supervisors Ilan Adler (a leader in convex

optimization, and a student of Dantzig, the father of the Simplex algo-

rithm) and Richard Karp (one of the great leaders of theoretical com-

puter science) was extremely exciting. Similar results were obtained

independently at the same time by other research groups. There were

some other exhilarating moments, particularly those between finding

out an amazing new result and discovering the bug on the next day,

but these are the rewards and frustrations of scientific research.

Shamir views himself as not committed to a particular problem. One of

the advantages of scientific research in the university setting is the freedom

to follow one’s interests and nose, and not be obliged to work on the same

problem for years. The exciting rapid developments in biology bring about

10.12 Notes 383

a continuous flow of new problems, ideas, and data. Of course, one has to

make sure breadth does not harm the research depth. In practice, in spite of

this “uncommitted” ideology, Ron finds himself working on the same areas

for several years, and following the literature in these fields a while later. He

tends to work on several problem areas simultaneously but tries to choose

topics that are overlapping to some extent, just to save on the effort of under-

standing and following several fields. Shamir says:

In my opinion, an open mind, high antennae, a solid background in the

relevant disciplines, and hard work are the most important elements

of discovery. As a judge once said, “Inspiration only comes to the law

library at 3 AM". This is even more true in science. Flexibility and

sensitivity to the unexpected are crucial.

Shamir views the study of gene networks, that is, understanding how

genes, proteins, and other molecules work together in concert, as a long-

standing challenge.

384 10 Clustering and Trees

10.13 Problems

Problem 10.1

Determine the number of different ways to partition a set of n elements into k clus-
ters.

Problem 10.2

Construct an instance of the k-Means Clustering problem for which the Lloyd algo-
rithm produces a particularly bad solution. Derive a performance guarantee of the
Lloyd algorithm.

Problem 10.3

Find an optimal algorithm for solving the k-Means Clustering problem in the case of
k = 1. Can you find an analytical solution in this case?

Problem 10.4

Estimate the number of iterations that the Lloyd algorithm will require when k = 1.
Repeat for k = 2.

Problem 10.5

Construct an example for which the CAST algorithm does not converge.

Problem 10.6

How do you calculate the trimming parameter δ in ADDITIVEPHYLOGENY?

Problem 10.7

Prove that a connected graph in which the number of vertices exceeds the number of
edges by 1 is a tree.

Problem 10.8

Some of 8 Hawaiian islands are connected by airlines. It is known one can reach every
island from any other (probably with some intermediate stops). Prove that you can
visit all islands making no more than 12 flights.

Problem 10.9

Show that any binary tree with n leaves has 2n− 3 edges.

Problem 10.10

How many different unrooted binary trees on n vertices are there?

Problem 10.11

Prove that every binary tree has at least two neighboring leaves.

Problem 10.12

Design a backtracking procedure to reconstruct the optimal assignment of characters
in the Sankoff algorithm for the Weighted Small Parsimony problem.

10.13 Problems 385

Problem 10.13

While we showed how to solve the Weighted Small Parsimony problem using dy-
namic programming, we did not show how to construct a Manhattan-like graph for
this problem. Cast the Weighted Small Parsimony problem in terms of finding a path
in an appropriate Manhattan-like directed acyclic graph.

Problem 10.14

The nearest neighbor interchange distance between two trees is defined as the minimum
number of interchanges to transform one tree into another. Design an approximation
algorithm for computing the nearest neighbor interchange distance.

Problem 10.15

Find two binary trees with six vertices that are the maximum possible nearest neigh-
bor interchange distance apart from each other.

