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From LCS to Alignment: Change up the Scoring
• The Longest Common Subsequence (LCS) problem

—the simplest form of sequence alignment – allows 
only insertions and deletions (no mismatches). 

• In the LCS Problem, we scored 1 for matches and 0 
for indels

• Consider penalizing indels and mismatches with 
negative scores

• Simplest scoring schema: 
         +1 : match premium
         -μ : mismatch penalty 
         -σ : indel penalty



 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Simple Scoring
• When mismatches are penalized by –μ, 

indels are penalized by –σ, 

   and matches are rewarded with +1, 

   the resulting score is:

     #matches – μ(#mismatches) – σ (#indels)
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The Global Alignment Problem
Find the best alignment between two strings under a given scoring 

schema

Input : Strings v and w and a scoring schema
Output : Alignment of maximum score

↑→ = -б
       = 1 if match
       = -µ if mismatch

                       si-1,j-1 +1  if vi = wj
si,j   =  max      s i-1,j-1 -µ if vi ≠ wj
                       s i-1,j - σ 

                       s i,j-1 - σ 

{
m : mismatch 
penalty
σ : indel penalty
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Scoring Matrices 
To generalize scoring, consider a (4+1) x(4+1) scoring 

matrix δ. 

In the case of an amino acid sequence alignment, the 
scoring matrix would be a (20+1)x(20+1) size.  The 
addition of 1 is to include the score for comparison 
of a gap character “-”.

This will simplify the algorithm as follows:
                         si-1,j-1 + δ (vi, wj)

si,j   =    max      s i-1,j  + δ (vi, -)

                         s i,j-1 + δ (-, wj)

{
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Measuring Similarity
• Measuring the extent of similarity between 

two sequences
• Based on percent sequence identity
• Based on conservation
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Percent Sequence Identity
• The extent to which two nucleotide or amino 

acid sequences are invariant

A C  C  T G  A  G  –  A G 
A C  G  T G  –  G  C  A G

70% identical

mismatch
indel
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Making a Scoring Matrix
• Scoring matrices are created based on 

biological evidence. 
• Alignments can be thought of as two 

sequences that differ due to mutations.  
• Some of these mutations have little effect on 

the protein’s function, therefore some 
penalties, δ(vi , wj), will be less harsh than 
others.
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Scoring Matrix: Example

AKRANR
KAAANK

-1 + (-1) + 

(-2) + 5 + 7 + 

3 = 11

 A R N K

A 5 -2 -1 -1

R - 7 -1 3

N - - 7 0

K - - - 6

•  Notice that although 
R and K are different 
amino acids, they 
have a positive score.

•   Why? They are 
both positively 
charged amino acidsà 
will not greatly change 
function of protein.
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Conservation
• Amino acid changes that tend to preserve the 

physico-chemical properties of the original 
residue
• Polar to polar

• aspartate à glutamate
• Nonpolar to nonpolar

• alanine à valine
• Similarly behaving residues

• leucine to isoleucine
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Scoring matrices
• Amino acid substitution matrices

• PAM
• BLOSUM

• DNA substitution matrices
• DNA is less conserved than protein 

sequences
• Less effective to compare coding regions at 

nucleotide level
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PAM
• Point Accepted Mutation (Dayhoff et al.)
• 1 PAM = PAM1 = 1% average change of all amino 

acid positions
• After 100 PAMs of evolution, not every residue will 

have changed
• some residues may have mutated several 

times
• some residues may have returned to their 

original state
• some residues may not changed at all
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PAMX
• PAMx = PAM1x

• PAM250 = PAM1250

• PAM250 is a widely used scoring matrix:    

         Ala  Arg  Asn  Asp  Cys  Gln  Glu  Gly  His  Ile  Leu  Lys ...
          A    R    N    D    C    Q    E    G    H    I    L    K  ...
Ala A    13    6    9    9    5    8    9   12    6    8    6    7  ...
Arg R     3   17    4    3    2    5    3    2    6    3    2    9
Asn N     4    4    6    7    2    5    6    4    6    3    2    5
Asp D     5    4    8   11    1    7   10    5    6    3    2    5
Cys C     2    1    1    1   52    1    1    2    2    2    1    1
Gln Q     3    5    5    6    1   10    7    3    7    2    3    5
...
Trp W     0    2    0    0    0    0    0    0    1    0    1    0
Tyr Y     1    1    2    1    3    1    1    1    3    2    2    1
Val V     7    4    4    4    4    4    4    4    5    4   15   10
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BLOSUM
• Blocks Substitution Matrix 
• Scores derived from observations of the 

frequencies of substitutions in blocks of 
local alignments in related proteins

• Matrix name indicates evolutionary distance
• BLOSUM62 was created using sequences 

sharing no more than 62% identity
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The Blosum50 Scoring Matrix
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Local vs. Global Alignment
• The Global Alignment Problem tries to find 

the longest path between vertices (0,0) and 
(n,m) in the edit graph.

• The Local Alignment Problem tries to find the 
longest path among paths between arbitrary 
vertices (i,j) and (i’, j’) in the edit graph.
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Local vs. Global Alignment
• The Global Alignment Problem tries to find the 

longest path between vertices (0,0) and (n,m) in the 
edit graph.

• The Local Alignment Problem tries to find the 
longest path among paths between arbitrary 
vertices (i,j) and (i’, j’) in the edit graph.

• In the edit graph with negatively-scored edges, 
Local Alignmet may score higher than Global 
Alignment
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Local vs. Global Alignment (cont’d)

• Global Alignment

• Local Alignment—better alignment to find 
conserved segment

    --T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
      |  || |  ||  | | | |||    || | | |  | ||||   |
    AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

                tccCAGTTATGTCAGgggacacgagcatgcagagac
                     ||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc
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Local Alignment: Example

Global alignment

Local alignment

Compute a “mini” 
Global Alignment to 
get Local
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Local Alignments: Why?
• Two genes in different species may be similar 

over short conserved regions and dissimilar 
over remaining regions.

• Example:
• Homeobox genes have a short region 

called the homeodomain that is highly 
conserved between species. 

• A global alignment would not find the 
homeodomain because it would try to align 
the ENTIRE sequence



 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Local Alignment Problem
• Goal: Find the best local alignment between 

two strings
• Input : Strings v, w and scoring matrix δ
• Output : Alignment of substrings of v and w 

whose alignment score is maximum among 
all possible alignment of all possible 
substrings
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The Problem with this Problem
• Long run time O(n4):

    - In the grid of size n x n there are ~n2 
vertices (i,j) that may serve as a source. 

    - For each such vertex computing alignments 
from (i,j) to (i’,j’) takes O(n2) time.

• This can be remedied by giving free rides
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Local Alignment: Example

Global alignment

Local alignment

Compute a “mini” 
Global Alignment to 
get Local
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Local Alignment: Example
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Local Alignment: Example
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Local Alignment: Example
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Local Alignment: Example
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Local Alignment: Example
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Local Alignment: Running Time
• Long run time O(n4):

    - In the grid of size n x n 
there are ~n2 vertices (i,j) 
that may serve as a 
source. 

    - For each such vertex 
computing alignments 
from (i,j) to (i’,j’) takes O
(n2) time.

• This can be remedied by 
giving free rides
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Local Alignment: Free Rides

Vertex (0,0)

The dashed edges represent the free rides from 
(0,0) to every other node.

Yeah, a free ride!
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The Local Alignment Recurrence
• The largest value of si,j over the whole edit 

graph is the score of the best local alignment.

• The recurrence:

                      0     
si,j   = max     si-1,j-1 + δ (vi, wj)

                     s i-1,j  + δ (vi, -)

                     s i,j-1 + δ (-, wj)

{

Notice there is only 
this change from the 
original recurrence of 
a Global Alignment
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The Local Alignment Recurrence
• The largest value of si,j over the whole edit 

graph is the score of the best local alignment.

• The recurrence:

                      0     
si,j   = max     si-1,j-1 + δ (vi, wj)

                     s i-1,j  + δ (vi, -)

                     s i,j-1 + δ (-, wj)

{

Power of ZERO: there is 
only this change from the 
original recurrence of a 
Global Alignment - since 
there is only one “free ride” 
edge entering into every 
vertex
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Scoring Indels: Naive Approach

• A fixed penalty σ is given to every indel:
•   -σ for 1 indel, 
• -2σ for 2 consecutive  indels
• -3σ for 3 consecutive  indels, etc.

Can be too severe penalty for a series of 
100 consecutive indels
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Affine Gap Penalties
• In nature, a series of k indels often come as a 

single event rather than a series of k single 
nucleotide events:

ATA__
GC

ATATT
GC

ATAG_
GC

AT_GT
GCNormal scoring would 

give the same score 
for both alignments

This is more 
likely.

This is less 
likely.



 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Accounting for Gaps
• Gaps- contiguous sequence of spaces in one of the 

rows

• Score for a gap of length x is: 
                       -(ρ + σx)
    where ρ >0 is the penalty for introducing a gap: 
                      gap opening penalty
    ρ will be large relative to σ:
                      gap extension penalty
    because you do not want to add too much of a 

penalty for extending the gap.
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Affine Gap Penalties
• Gap penalties:

•    -ρ-σ  when there is 1 indel
•  -ρ-2σ  when there are 2 indels
•  -ρ-3σ  when there are 3 indels, etc. 

• -ρ- x·σ (-gap opening - x gap extensions)
• Somehow reduced penalties (as compared to 

naïve scoring) are given to runs of horizontal 
and vertical edges
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Affine Gap Penalties and Edit Graph

     

    

    

    

To reflect affine gap 
penalties we have to 
add “long” horizontal 
and vertical edges to 
the edit graph.  Each 
such edge of length x 
should have weight 
          -r - x *s
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Adding “Affine Penalty” Edges to the Edit Graph

     

    

    

    

There are many such edges!

Adding them to the graph 
increases the running time 
of the alignment algorithm 
by a factor of n (where n is 
the number of vertices)

So the complexity increases 

from O(n2) to O(n3)
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Manhattan in 3 Layers

ρ

ρ

σ

σ
δ
δ

δ

δ
δ
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Affine Gap Penalties and  3 Layer Manhattan Grid

• The three recurrences for the scoring 
algorithm creates a 3-layered graph. 

• The top level creates/extends gaps in the 
sequence w.  

• The bottom level creates/extends gaps in 
sequence v. 

• The middle level extends matches and 
mismatches.
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Switching between 3 Layers
• Levels:

• The main level is for diagonal edges  
• The lower level is for horizontal edges
•  The upper level is for vertical edges

• A jumping penalty is assigned to moving from the 
main level to either the upper level or the lower level 
(-r- s)

• There is a gap extension penalty for each 
continuation on a level other than the main level (-s)
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The 3-leveled Manhattan Grid

Gaps in w

Matches/
Mismatch

es
Gaps in v
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Affine Gap Penalty Recurrences

si,j   =          s i-1,j  - σ
       max     s i-1,j –(ρ+σ)

si,j   =          s i,j-1  - σ
       max     s i,j-1 –(ρ+σ)

si,j   =         si-1,j-1 + δ (vi, wj)

      max     s i,j  

                  s i,j

Continue Gap in w (deletion)

Start Gap in w (deletion): from middle

Continue Gap in v (insertion)

Start Gap in v (insertion):from middle

Match or Mismatch

End deletion: from top

End insertion: from bottom


