Suffix Arrays

CMSC 423

Suffix Arrays

Even though Suffix Trees are O(n) space, the constant hidden by the
big-Oh notation is somewhat “big”: = 20 bytes / character in good
implementations.

If you have a |0Gb genome, 20 bytes / character = 200Gb to store
your suffix tree.”Linear” but large.

Suffix arrays are a more efficient way to store the suffixes that can do
most of what suffix trees can do, but just a bit slower.

Slight space vs. time tradeoff.

Example Suffix Array

* ldea:lexicographically sort
all the suffixes.

S = attcatg$ e Store the starting indices of
the suffixes in an array.
| |attcatg$ 8|$
2|ttcatg$ 5|atg$
3|tcatg$ " iphabercaly | lattcatg$
4|catg$ > 4|catg$
Slatg$ the indices just /g%
6(tg$d come along for 3|tcatg$
/|g$ 6|tg$
8% 2|ttcatg$

index of suffix

suffix of s

Example Suffix Array

s = attcatg$

ONONUVT A WDN —

attcatgd
ttcatg$

index of suffix

suffix of s

sort the suffixes
alphabetically

>

the indices just
“come along for
the ride”

|dea: lexicographically sort
all the suffixes.

Store the starting indices of
the suffixes in an array.

NONWd DS~ — 010

Another Example Suffix Array

* ldea:lexicographically sort
all the suffixes.

>~ Cattcat$ e Store the starting indices of
the suffixes in an array.
| |cattcat$ 8|$
2|attcat$ 6|at$
Btecath | e | 2lacccar§
4|tcat$ > S|cat$
5 Cat$ the indices just | Cattcat$
6/at$ Cherae | 7|t$
7(t$ 4|tcat$
8% 3|ttcat$

index of suffix

suffix of s

Another Example Suffix Array

s = cattcat$d

ONONUVT A WDN —

cattcat$
attcat$
ttcat$
tcat$
cat$

at$
td
$

index of suffix

suffix of s

sort the suffixes
alphabetically

>

the indices just
“come along for
the ride”

|dea: lexicographically sort
all the suffixes.

Store the starting indices of
the suffixes in an array.

WAd—0OUI DN O OO

Search via Suffix Arrays

s = cattcat$

«— \/ e Does string “at” occur in s?

Binary search to find “at”.

e What about “tt”’?

Wh~Jd— 01N OO0

Counting via Suffix Arrays

s = cattcat$d

e How many times does “at”
occur in the string?

o All the suffixes that start with
“at” will be next to each other
in the array.

* Find one suffix that starts with
“at” (using binary search).

* Then count the neighboring
sequences that start with at.

WhAhd— U1 DN OO

K-mer counting

Problem: Given a string s, an integer k, output all pairs (b, i) such
that b is a length-k substring of s that occurs exactly i times.

CurrentCount

WAN—OUI PN O OO

|. Build a suffix array.

2.Walk down the suffix array, keeping a
CurrentCount count
If the current suffix has length <k, skip it

If the current suffix starts with the same
length-k string as the previous suffix:
increment CurrentCount
else
output CurrentCount and previous
length-k suffix
CurrentCount := |

Output CurrentCount & length-k suffix.

Constructing Suffix Arrays

Easy O(n? log n) algorithm:

sort the n suffixes, which takes O(n log n) comparisons,
where each comparison takes O(n).

There are several direct O(n) algorithms for constructing suffix
arrays that use very little space.

The Skew Algorithm is one that is based on divide-and-conquer.

An simple O(n) algorithm: build the suffix tree, and exploit the
relationship between suffix trees and suffix arrays (next slide)

Relationship Between
Suffix Trees & Suffix Arrays

> ={$,a,c,t}

s = cattcat$
12345678 i
$

Red #s = starting position of the
suffix ending at that leaf
Leaf labels left to right: 86251743
Edges leaving each node are
sorted by label (left-to-right).

Relationship Between
Suffix Trees & Suffix Arrays

> ={$,a,c,t}

s = cattcat$
12345678 i
$

s = cattcat$d
at t \%
8 O/ - tcat$ $

O 8
cat O 6
at$d
5 ° tcaté g teat$ é o 2|attcat$
4
6 e ? 5|cat$
| |cattcat$
/ 7(t$
Red #s = starting position of the
suffix ending at ti:t leaf 4 tcat$
Leaf labels left to right: 86251743 3 ttcat$

Edges leaving each node are
sorted by label (left-to-right).

Recap

e Suffix arrays can be used to search and count substrings.

e Construction:
e Easily constructed in O(n? log n)

 Simple algorithms to construct them in O(n) time using
possibly O(n?) space.

* More complicated algorithms to construct them in O(n) time
using at most O(n) space.

* More space efficient than suffix trees: just storing the original
string + a list of integers.

