
Central Issues in Biological Sequence Comparison

Definitions: What is one trying to find or optimize?

Algorithms: Can one find the proposed object optimally

or in reasonable time optimize?

Statistics: Can one’s result be explained by chance?

In general there is a tension between questions. A definition

that is too simple may allow efficient algorithms, but may not

yield results of biological interest. However, a definition that

includes most of the relevant biology may entail intractable

algorithms and statistics. The most successful approaches find

a balance between these considerations.

The Problem

Given: Two protein or DNA sequences

	�	 ≡ 	 ������…�	
	 ≡ 	������…��
where the � and � are chosen from a finite alphabet �, e.g. �, �, �, � .

We shall adopt the somewhat more flexible formalism of similarity,

with higher values considered better.

Although there are other possibilities, similarity is generally defined

with reference to a sequence alignment, in which individual letters

from each sequence are placed into correspondence.

How can one define the distance between the sequences � and
,

or alternatively their similarity?

Examples of Sequence Alignment

groan

|||:|

grown

colo-r

|||| |

colour

theatre

|||||::

theater

theatre

|||||

theater
×

elephant

|||: |||

eleg-ant

vermiform

::||:::::

formation

vermiform-----

about||||

-----formation

disestablishment

||| | |||

dis-------s--ent

disestablishment

||| :|||

dis---------sent

Applications

Sequence alignment arises in many fields:

Molecular biology

Inexact text matching (e.g. spell checkers; web page search)

Speech recognition

In general:

The precise definition of what constitutes an alignment may vary by field,

and even within a field.

Many different alignments of two sequences are possible, so to select

among them one requires an objective (score) function on alignments.

The number of possible alignments of two sequences grows exponentially

with the length of the sequences. Good algorithms are required.

NCBI BLAST Protein Database Search

>sp|Q99728.2|BARD1_HUMAN

Length=777

GENE ID: 580 BARD1 | BRCA1 associated RING domain 1 [Homo sapiens]

Score = 53.1 bits (126), Expect = 3e-07, Method: Composition-based stats.

Identities = 32/111 (29%), Positives = 55/111 (50%), Gaps = 15/111 (14%)

Query 24 THVVMKTDAEFVCERTLKYFLGIAGGKWVVSYFWVTQSIKERKMLNEHDFEVRGDVVNGR 83

THVV+ DA + TLK LGI G W++ + WV ++ + E +E+

Sbjct 605 THVVVPGDA---VQSTLKCMLGILNGCWILKFEWVKACLRRKVCEQEEKYEIP------- 654

Query 84 NHQGPKRARESQDR---KIFRGLEICCYGPFTNMPTDQLEWMVQLCGASVV 131

+GP+R+R ++++ K+F G +G F + P D L +V G ++

Sbjct 655 --EGPRRSRLNREQLLPKLFDGCYFYLWGTFKHHPKDNLIKLVTAGGGQIL 703

BLAST is a widely-used program for searching DNA and protein

sequence databases for sequences similar to a query sequence.

Here is one alignment returned by a BLAST protein database search:

Elements of Global Sequence Alignment

No crossings allowed. For algorithmic reasons, it is fortunate that, although there

are natural mechanisms (mutations) that lead to amino acid or nucleotide substitutions,
insertions and deletions, there are none that yield transpositions, unlike with keyboard-
produced text. In contrast, when analyzing RNA folding, one may choose for algorithmic
reasons to exclude “pseudoknots”, which do in fact occur naturally.

Gaps. An arbitrary number of null characters (represented by dashes) may be placed
into either sequence, and aligned with letters in the other sequence. Two nulls may not
be aligned. Depending upon one’s perspective, the alignment of a letter with a null may
be understood as the insertion of a letter into one sequence, or the deletion of a letter
from the other. Therefore, a letter aligned with a null is sometimes called an indel.

Alignment scores. The score for an alignment is taken to be the sum of scores for
aligned pairs of letters, and scores for letters aligned with nulls. Each such pairing is called
an alignment column.

Substitution scores. Scores for aligned pairs of letters are called substitution scores,
whether the letter aligned are identical or not. Most simply, substitution scores may take
the form of match scores and mismatch scores.

Gap scores. The score for a letter aligned with a null is called a gap score. Usually gap
scores are letter-independent.

Global alignment. All letters and nulls in each sequence must be aligned.

Sequence Similarity

Define the similarity of two sequences as the score of
their highest-scoring (optimal) alignment.

How do we find the an optimal alignment of two
sequence, and its score?

Brute force enumeration is impractical, because the
number of possible alignments becomes astronomically
large for even fairly short sequences.

Fortunately, the problem is soluble efficiently using a
technique called dynamic programming.

Dynamic Programming and Global Alignment

Dynamic programming is a method by which a larger problem may be solved by first
solving smaller, partial versions of the problem. We demonstrate here how it may be
applied to global sequence alignment, where at first we are interested only in the
similarity of two sequences, and not the alignment that yields this score.

Definitions:� �, � the substitution score for aligning letters � and �� the gap score for aligning any letter to a null� the partial sequence consisting of the first � letters of � ≡ ����…�	
� the partial sequence consisting of the first � letters of
 ≡ ����…�����(�, �) the similarity of � and
�
Consider the last column of an optimal alignment of � and
�. This column either
aligns � to ��, or � to a null, or �� to a null. Because we do not allow “crossing”,
there are no other possibilities. This observation yields the following recurrence:

 !" #, $ = &'()	 !" # − +, $ − + +	-((#, .$)	 !" # − +, $ + / !" #, $ − + + /
In brief, we can solve for ���(0, 1) by solving smaller versions of the problem first.

� and �� aligned � aligned with a null �� aligned with a null

Path graphs
A global alignment may be viewed as a path through a directed path graph which

begins at the upper left corner and ends at the lower right. Diagonal steps correspond

to substitutions, while horizontal or vertical steps correspond to indels. Scores are

associated with each edge, and the score of an alignment is the sum of the scores of

the edges it traverses. Each alignment corresponds to a unique path, and vice versa.

��
��
⋮
�	

�� �� ⋯ ��

Start

End

Dynamic programming on path graphs

One may associate a partial similarity with each node of a path graph. If

the values of ��� � − 1, � − 1 , ��� � − 1, � and ��� �, � − 1 are

known, the value of ��� �, � may be calculated.

 !"(# − +, $ − +)

 !"(#, $ − +)

 !"(# − +, $)

 !"(#, $)/

/-((#, .$)

An Example

Scores: Match +1 Mismatch 0 Gap -1

G A C T A C

A

C

C

G

0

-1

-1 -2

-2

-3

-3

-4

-4

-5 -6

0 0 -1 -2 -3 -4

-1 0 1 0 -1 -2

-1 1 0

0 1 1

0

-1

-1

-1

-1
1

-1

-2

0 -1

-1 0

What is the optimal alignment?

G A C T A C

A

C

C

G

0

-1

-1 -2

-2

-3

-3

-4

-4

-5 -6

0 0 -1 -2 -3 -4

-1 0 1 0 -1 -2

-1 1 0

0 1 1

-1

-2

0 -1

-1 0

Record traceback information: Which edge or

edges led to the optimal score at each node?

G A C T A C

A

C

C

G

0

-1

-1 -2

-2

-3

-3

-4

-4

-5 -6

0 0 -1 -2 -3 -4

-1 0 1 0 -1 -2

-1 1 0

0 1 1

-1

-2

0 -1

-1 0

Optimal alignments:
-ACG-C

GACTAC
and

-AC-GC

GACTAC

Follow the traceback edges from the final node

Pseudocode for Finding Sequence Similarity

Similarity(X,Y):

For i = 0,...,m: SIM[i,0] = i*g

For j = 1,...,n: SIM[0,j] = j*g

For i = 1,...,m:

For j = 1,...,n:

SIM[i,j] = max(

SIM[i-1,j-1] + s(X[i],Y[j]),

SIM[i-1,j]+g,

SIM[i,j-1]+g

)

EndFor

EndFor

Return SIM[m,n]

Exercise: Generalize the code to

include traceback information, and

produce one optimal alignment.

Note: This is generally known as the

Needleman-Wunsch algorithm, after the

first paper in the field of computational

molecular biology to apply dynamic

programming to the global alignment

problem. However, the paper actually

describes a somewhat different

algorithm which is almost never used.

Needleman, S.B. & Wunsch, C.D. (1970) “A general method

applicable to the search for similarities in the amino acid

sequences of two proteins.” J. Mol. Biol. 48:443-453.

Observations and Generalizations

The nodes can be expanded in a variety

of orders, so long as all nodes that “feed

into” a given node are expanded before

that node. Possible expansion orders are:

The time complexity of the algorithm is 5 01 .
If only the similarity is desired, the space complexity is 5 min 0, 1 ;

if an optimal alignment is sought, the space complexity is 5 01 , but

as we shall see, this too can be reduced to 5[min 0, 1].
It is possible to save time (but in general no more than a constant factor) by

not expanding nodes that can not possibly participate in an optimal path.

Fickett, J.W. (1984) Nucl. Acids Res. 12:175-180; Spouge, J.L. (1989) SIAM J. Appl. Math. 49:1552-1566.

Global Alignment Scores

Multiplying all substitution and gap scores by a positive

constant does not change the optimal alignment. Why?

Adding a constant < to all substitution scores, and </2 to all

gap scores, does not change the optimal alignment. Why?

Modifying global alignment scores so that � = 0 can speed

up the inner loop of the dynamic programming algorithm.

A global alignment scoring system with the three nominal

parameters of match score �, mismatch score �, and gap

score �, in fact has a single free parameter. For example,

assuming � > �, one can always construct an equivalent

scoring system with � = 1 and � = 0. What is the scoring

system of this form equivalent to (� = 1, � = 0, � = −1)?

Local Alignment: Motivation

In the early days of protein sequence

comparison, most known related

proteins, were related over their whole

lengths. However, soon proteins that

shared only isolated regions of similarity

were found. A schematic of a protein

superfamily is shown here, with related

domains represented by similar boxes.

The measure of global sequence

similarity, and the Needleman-Wunsch

alignment algorithm, was not well-

adapted to finding such domains. A

new definition of local similarity was

required, along with a new algorithm

for finding locally optimal alignments.

Local Alignment: Definition

During the 1970s and early 1980s, a variety of definitions for local alignment

were proposed. The one that eventually gained the greatest popularity, along

with an associated algorithm, is due to Smith & Waterman.

Smith, T.F. & Waterman, M.S. (1981) “Identification of common

molecular subsequences.” J. Mol. Biol. 147:195-197.

Smith & Waterman proposed simply that a local alignment of two sequences

allow arbitrary-length segments of each sequence to be aligned, with no penalty

for the unaligned portions of the sequences. Otherwise, the score for a local

alignment is calculated the same way as that for a global alignment.

It would at first appear that the problem of finding an optimal local alignment

should be significantly more complex than the problem of finding an optimal

global alignment, because the start and stop positions of the alignment must be

located as well. However, only a constant factor more calculation is necessary.

The Smith-Waterman Algorithm

Scores: Match +4 Mismatch -1 Gap -2

G A T T A

A

C

C

G

0

0

0 0

0

0

0

0

0

0 0

0 4 2 0 0 4

0 2 3 1 0 2

2 2 5

1 3 4

4

2

1 3

3 0

G

.

Two modifications to

Needleman-Wunsch:

1) Allow a node to

start at 0.

2) Record the highest-

scoring node, and

trace back from there.

Why does this algorithm

yield an optimal local

alignment?

Pseudocode for Finding Local Sequence Similarity

Local_Similarity(X,Y):

S=0

For i = 0,...,m: SIM[i,0] = i*g

For j = 1,...,n: SIM[0,j] = j*g

For i = 1,...,m:

For j = 1,...,n:

SIM[i,j] = max(

0,

SIM[i-1,j-1] + s(X[i],Y[j]),

SIM[i-1,j]+g,

SIM[i,j-1]+g

)

S=max(S,SIM[i,j])

EndFor

EndFor

Return S

Exercise: Generalize the code to

include traceback information, and

produce one optimal local alignment.

Multiplying all substitution

and gap scores by a positive

constant does not change the

optimal alignment. Why?

Adding a constant < to all

substitution scores, and </2
to all gap scores, can change

the optimal alignment. Why?

The Smith-Waterman Algorithm: Traceback

Scores: Match +4 Mismatch -1 Gap -2

G A T T A

A

C

C

G

0

0

0 0

0

0

0

0

0

0 0

0 4 2 0 0 4

0 2 3 1 0 2

2 2 5

1 3 4

4

2

1 3

3 0

G

.

Optimal local alignments,

or subalignments:

AC-G

ATTG

A-CG

ATTG
and

Questions:

Can one find other

locally optimal

subalignments?

How can they be

defined?

Local optimality: Definitions and Algorithms

A definition of local optimality was proposed in 1984, along

with an algorithm to find all locally optimal subalignments.

[Sellers, P.H. (1984) Bull. Math. Biol. 46:501-514.]

A subalignment is locally optimal if its score is greater than

or equal to that of any subalignment it “touches”.

A provably 5(01) algorithm for finding all locally optimal

subalignments was subsequently described. [Altschul, S.F. &

Erickson, B.W (1986) Bull. Math. Biol. 48:633-660.]

Problem: By Sellers’ definition, a strong subalignment can

suppress, by means of intermediaries, subalignments it does

not actually touch. This can be a particular problem if one is

seeking internal approximate repeats.

One may advance an alternative definition to address this

problem: A subalignment is weakly locally optimal if it

touches no weakly locally optimal subalignment that has

greater score (Altschul & Erickson, 1986). This definition is

not circular, but recursive.

No 5 01 algorithm for finding all weakly locally optimal

subalignments of two sequences has been described,

although several incorrect ones have been published.

� A
�

��� � > ��� A > ���(�)

Locally Optimal Subalignments

Scores: Match +4 Mismatch -1 Gap -2

G A T T A

A

C

C

G

0

0

0 0

0

0

0

0

0

0 0

0 4 2 0 0 4

0 2 3 1 0 2

2 2 5

1 3 4

4

2

1 3

3 0

G

.

Optimal subalignments:

AC-G

ATTG

A-CG

ATTG
and

Additional, locally optimal

subalignments:

G

G
and

A

A

Semi-Global Alignment

Biological problem: Find approximate

matches to a given pattern within a large

sequence. For example, seek promoters

within a DNA sequence, or a copies of a

domain within a protein sequence.

Solution: Semi-global alignment.

Needleman-Wunsch algorithm with

two modifications: 1) Penalize end

gaps in the pattern, but not in the

long sequence; 2) Trace back from

the highest scoring node along the

long edge of the path graph.

Erickson, B.W. & Sellers, P.H. (1983) “Recognition of patterns in genetic sequences.”

In Time Warps, String Edits and Macromolecules: The Theory and Practice of Sequence

Comparison, D. Sankoff & J.B. Kruskal (eds.), pp. 55-91, Addison-Wesley, Reading, MA.

-2

-4

-6

-8

0 0 00 000

×

