String Comparison

CMSC 423

Why compare DNA or protein

sequences?

Partial CTCF protein sequence in 8 organisms:

SOPEEOTE

sapiens
troglodytes
lupus
taurus
musculus
norvegicus
gallus
rerio

-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—-—————— POPVTPA
—-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—-—————— POPVTPA
—-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—--—————— POPVTPA
—-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—-—————— POPVTPA

—EDSSDSEENAEPDLDDNEEEEEPAVEIEPEPE--POQPOPPPPPQOPVAPA
—EDSSDS-ENAEPDLDDNEEEEEPAVEIEPEPEPQPOQPOPOQPOPOPVAPA
—EDSSDSEENAEPDLDDNEDEEETAVEIEAEPE-——---—————— VSAEAPA
DDDDDDSDEHGEPDLDDIDEEDEDDL-LDEDOMGLLDQAPPSVPIP-APA

® |dentify important sequences by finding conserved regions.

® Find genes similar to known genes.

® Understand evolutionary relationships and distances (D. rerio aka zebrafish
is farther from humans than G. gallus aka chicken).

® |Interface to databases of genetic sequences.

® As a step in genome assembly, and other sequence analysis tasks.

® Provide hints about protein structure and function (next slide).

Sequence can reveal structure

) {
Sy T ¢

O W v X
(AL~ R

(a) 1dtk (b) Spti

e~

ldtk XAKYCKLPLRIGPCKRKIPSFYYKWKAKQCLPFDYSGCGGNANRFKTIEECRRTCVG-
S5pti RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA

The Simplest String Comparison Problem

Given: Two strings

a = ado=asa4...Adm

b — b1b2b3b4...bn

where a;, b; are letters from some alphabet like {A,C,G,T}.

Compute how similar the two strings are.

What do we mean by “similar”?

Edit distance between strings a and b = the smallest number of the
following operations that are needed to transform a into b:

e mutate (replace) a character

e delete a character
delete

: o tat rt
e insert a character l‘lddle — rldle M rlple mse trlple

Representing edits as alignments

prin-ciple
BEREERRP &
prinncipal
(1 gap, 2 mm)

misspell

mis-pell
(1 gap)

aa-bb-ccaabb

X [

ababbbc-a-b-
(5 gaps, 1 mm)

prin-cip-le
T T
prinncipal-
(3 gaps, 0 mm)

prehistoric

—-—=-historic
(3 gaps)

al-go-rithm-
[xx [[x]
alKhwariz-mi
(4 gaps, 3 mm)

Query
Sbjct
Query
Sbjct
Query
Sbjct
Query
Sbjct
Query
Sbjct
Query
Sbjct
Query
Sbjct
Query

Sbjct

NCBI BLAST DNA Alignment

>gb|AC115706

1650

56838

1710

56896

1769

56948

1829

57008

1889

57056

1943

57115

2003

57169

2063

57225

gtgtgtgtgggtgeacatttgtgtgtgtgtgegectgtgtgtgtgggtgectgtgtggt
NRRRRRNNN . e rerrrrrer E o rrrrrer AR RN R RN
GTGTGTGTGGAAGTGAGTTCATCTGTGTGTGCACATGTGTGTGCA--TGCATGCATGTGT

gtg-gggcacattigtgtgtgtgtgtgtgecetgtgtgtgggtgeacatitgigtgtgtge
AR I
GTCCGGGCA-——--~ TGCATGTCTGTGTGCATGTGTGTGTGTGTGCAT--GTGTGAGTAC

ctgtgtgtgtgtgectgtgtgtgggggtgeacatttgtgtgtgtgtgtgectgtgtgtegg
I L B B B
CTGTGTGTGTATGCTTGTATGTGTGTGTGTGCATGTGTGTAGGTGTGTATATGTGTAAGT

gggtgecacattigtgtgtgtgtgtgeectgtgtgtgtgggtgeacatttgtgigtgtgtgt
N U Y A LEREEREEED 1l

F e evem—e CATCTGTGTGTATGTGTG--TGTGAGAGTGCATGCA----TGTGTGTGTGAGT

gectgtgtgt-—gtgggtgeacatttgtgtgigtgtgectgtg--tgtgt--gggrgeac
U U I I I B O B
TCATCTGTGTCAGTGTATGCTTATGGGTATAACT-TAACTGTGCATGTGTAAGTGTGTTC

atttgtgtgtgtgtgtgectgtgtgtgtgggtgeacatttgtgtgtgtgectgigtgtgg
I B rrereerr rerernd
ATCTGTGTATGTGTGTG--TGTGTGAGTTAGTTCA----TCTGTGTGTGAGAGTGTGTGA

gtgcacatttgtgtgtgtgtgectgtgtgtgtgtgectgtgtgtgtgggtgeacatitgt
A I I T O O O
G--CTCATCTGTGTGTGAGTTCATCTGTATGAGTG--TGTGTATGTGTGTGTACAAATGA

T T T e T
GTTCATCTGTGCATGTGTGTGTG-~-——--~ TTTAAGTGTGTTCATCTG--TGTGCGTGT

.7| Mus musculus chromosome 8, clone RP23-382B3, complete sequence

1709

56895

1768

56947

1828

57007

1888

57055

1942

57114

2002

57168

2062

57224

2122

57274

Comparing Bird Songs

s

 arae LY

o ~«~a~««

. w—

- p—

. —

. -

E: 1
m

| a,a_ l

,,%

A tgq wa

SIS X
Cpder R
RSO

101N

QQ.

! .tn,:_.a\ .

23::_

e

W»Q_Am.\.\h\

E.na&ﬁ-‘. ’

.ixRR:::.

SANEEE L

a4 ﬂu

s
'* ‘“

nb .qmﬁw~s.._

(LA

xa.ndﬁn\-ﬂ\

v M.ﬂ m-., :
L3 7z LN
U ‘Vq %” A

erﬂ v
x za%

A e R

Bl s < S|

ndng €

:c:
:5 2
:5: i
IR

= 1 i T
Mg ,m ,\m;

- TFE«..\ v

L (({ ﬁ:

ﬁxz. a.m

AA&.V <+

(e
e
e
W
€A A
g amv

AN &u

>
- l“

)
.o»

B 2L nMM

o.;...u . UM\

TSV

:S:i
_

%:; ({
e 1.\.&“\

A\rszﬂ

SR
ﬂ-..wf .. -

T DR R

e (U

zfccﬁ ey

CU L GRS

ﬁ.::

:.n 31 s s.N\

S < CCLCRRR

.b [
23 ::

Florian et al. Hidden Markov Models in the Neurosciences

Tracing Textual Influences

She locks her lily fingers one in one. "Fondling," she saith, "since I have

Example from ithi ircui is i |
Horton, Olsen, Roe,

thou shalt be my deer; Feed where thou wilt, on mountain or in dale:

Digital Studies / Le e
champ Graze on my lips; and if those hills be dry, Stray lower, where the pleasant
numerique, Vol 2, fountains lie." Within this limit is relief enough.... (Shakespeare, Venus and
No 1 (2010)
Adonis [1593])

This later play Pre. Fondling, said he, since I haue hem'd thee heere,
by Markham VVithin the circuit of this Iuory pale.
references _
Shakespeare’s Dra. I pray you sir help vs to the speech of your master.
poei. Pre. Ile be a parke, and thou shalt be my Deere: He is very

busie in his study. Feed where thou wilt, in mountaine or

on dale. Stay a while he will come out anon. Graze on my
Common lips, and when those mounts are drie, Stray lower where
passages . _ _
identified by the pleasant fountaines lie . Go thy way thou best booke in
sequence the world.
alignment : 7
algorithms. Ve. I pray you sir, what booke doe you read? (Markham,

The dumbe knight. A historicall comedy... [1)

The String Alignment Problem

Parameters:

¢ »

e “gap”isthe cost of inserting a “-” character, representing an insertion
or deletion

e cost(x,y) is the cost of aligning character x with character y.
In the simplest case, cost(x,x) = 0 and cost(x,y) = mismatch penalty.

Goal:

e Can compute the edit distance by finding the lowest cost
alignment.

e Cost of an alignment is: sum of the cost(x,y) for the pairs of characters
that are aligned + gap x number of - characters inserted.

Another View: Alignment as a Matching

Each string is a set of nodes, one for each character.
Looking for a low-cost matching (pairing) between the sequences.

19

Cost of a matching is:

gap X #unmatched + Z cost(aj, bj)
(aiabj)

<

Edges are not allowed to cross!

Algorithm for Computing Edit Distance

Consider the last characters of each string:

a = ai1d2Aasa4...Am

b — b1b2b3b4...bn

One of these possibilities must hold:
1. (am, bn) are matched to each other
2. am is not matched at all

3. bn is not matched at all

4. am is matched to some b; (j # n) and b, is matched to some ax (k = m).

Algorithm for Computing Edit Distance

Consider the last characters of each string:

a = ai1d2Aasa4...Am

b — b1b2b3b4...bn

One of these possibilities must hold:
1. (am, bn) are matched to each other
2. am is not matched at all

3. bn is not matched at all

4. am is matched to some b; (j # n) and b, is matched to some ax (k = m).

#4 can’t happen! Why?

No Crossing Rule Forbids #4

4. am is matched to some b; (j # n) and b, is matched to some ax (k = m).

g

So, the only possibilities for what happens to the last characters are:
1. (am, bn) are matched to each other
2. am 1s not matched at all

3. bn 1s not matched at all

Recursive Solution

Turn the 3 possibilities into 3 cases of a recurrence:

cost(aj, bj) + OPT(i —1,j — 1) match a;, b;

OPT(i,j) = min ¢ gap + OPT (i — 1,)) a; is not matched
I gap + OPT(i,j — 1) b; is not matched
Cost of the optimal 1
alignment between Written in terms of
i...a; and b;...b; the costs of smaller
problems

Key: we don’t know which of the 3 possibilities is the right one, so we try
them all.

Base case: OPT (i,0) =i x gap and OPT(0,j) =j x gap.

(Aligning 1 characters to 0 characters must use i gaps.)

Computing OPT(i,j) Efficiently

We're ultimately interested in OPT(n,m), but we will compute all other
OPT(ij) (1 < n,j < m) on the way to computing OPT(n,m).

Store those values in a 2D array:

OPT(i-\@
9 | 9g \\
8 | 8¢)
7 |79 ‘
s (o - OPT(i, j)
\\J
J 5 | 59
e AN OPT(i, j-1)
2|2 B OPT(i-1, j-1)
1 | 19
0| O 191203940 |59 |6g |79 |8g]|9g | 109 | 11g | 129
o 1 2 3 4 5 6 7 8 9 10 11 12

Filling in the 2D Array

109

119

129

10

11

12

Edit Distance Computation

EditDistance(X,Y):
For 1 = 1,...,m: A[1,0] = 1*gap

For Jj =1,...,n: A[0,]] = Jj*gap
For 1 = 1,...,m:
For j =1,...,n:

A[1,]J] = min(
cost(a[i],b[j:) T A[i_llj_l]l
gap + A[1-1,3]],
gap + A[1,]J-1]

)
EndFor

EndFor
Return A[m,n]

Wheres the answer?

OPT(n,m) contains the edit distance between the two strings.

Why? By induction: EVERY cell contains the optimal edit distance between
some prefix of string 1 with some prefix of string 2.

Running Time

Number of entries in array = O(m x n), where m and n are the lengths of the
2 strings.

Filling in each entry takes constant O(1) time.

Total running time is O(mn).

Finding the actual alignment

OPT(i-1,))

9g \\

8¢9)

/9

- ‘ - OPT(i, j)
— ! | /

29 / B

40 AN OPT(i, j-1)

> \EEANEe

29 ~OPT(i-1, j-1)

19

O |19 |29 |39 |49 |59 |6g |79 |8g|9g | 109 | 119 | 129

o 1 2 3 4 5 6 7 8 9 10 11 12

Trace the arrows all the way back

=

109

119

129

10

11

12

Outputting the Alignment

Build the alignment from right to left.

ACGT
A-GA

Follow the backtrack pointers starting from entry (n,m).
e If you follow a diagonal pointer, add both characters to the alignment,

e Ifyou follow a left pointer, add a gap to the y-axis string and add the x-
axis character

e If you follow a down pointer, add the y-axis character and add a gap to
the x-axis string.

Another View: Recasting as a Graph

o

\edge from
(|_1 ’j_1) to (I!J)
has weight
cost(ai,bj)

Traceback path =
shortest path from (0,0)
to (m,n)

Dynamic Programming

The previous sequence alignment / edit distance algorithm is an example of
dynamic programming.

Main idea of dynamic programming: solve the
subproblems in an order so that when you need an answer,
it’s ready.

Requirements for DP to apply:

1. Optimal value of the original problem can be computed from some
similar subproblems.

2. There are only a polynomial # of subproblems

3. There is a “natural” ordering of subproblems, so that you can solve a
subproblem by only looking at smaller subproblems.

