
String Comparison
CMSC 423

Why compare DNA or protein
sequences?

Partial CTCF protein sequence in 8 organisms:

H. sapiens -EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE----------PQPVTPA
P. troglodytes -EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE----------PQPVTPA
C. lupus -EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE----------PQPVTPA
B. taurus -EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE----------PQPVTPA
M. musculus -EDSSDSEENAEPDLDDNEEEEEPAVEIEPEPE--PQPQPPPPPQPVAPA
R. norvegicus -EDSSDS-ENAEPDLDDNEEEEEPAVEIEPEPEPQPQPQPQPQPQPVAPA
G. gallus -EDSSDSEENAEPDLDDNEDEEETAVEIEAEPE----------VSAEAPA
D. rerio DDDDDDSDEHGEPDLDDIDEEDEDDL-LDEDQMGLLDQAPPSVPIP-APA

• Identify important sequences by finding conserved regions.

• Find genes similar to known genes.

• Understand evolutionary relationships and distances (D. rerio aka zebrafish
is farther from humans than G. gallus aka chicken).

• Interface to databases of genetic sequences.

• As a step in genome assembly, and other sequence analysis tasks.

• Provide hints about protein structure and function (next slide).

Sequence can reveal structure

1dtk XAKYCKLPLRIGPCKRKIPSFYYKWKAKQCLPFDYSGCGGNANRFKTIEECRRTCVG-
5pti RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA

(a) 1dtk (b) 1dtk5pti

The Simplest String Comparison Problem

Given: Two strings

a = a1a2a3a4...am
b = b1b2b3b4...bn

where ai, bi are letters from some alphabet like {A,C,G,T}.

Compute how similar the two strings are.

What do we mean by “similar”?

Edit distance between strings a and b = the smallest number of the
following operations that are needed to transform a into b:

• mutate (replace) a character

• delete a character

• insert a character

Representing edits as alignments

prin-ciple
|||| |||XX
prinncipal
(1 gap, 2 mm)

misspell
||| ||||
mis-pell
(1 gap)

prin-cip-le
|||| ||| |
prinncipal-
(3 gaps, 0 mm)

prehistoric
 ||||||||
---historic
(3 gaps)

aa-bb-ccaabb
|X || | | |
ababbbc-a-b-
(5 gaps, 1 mm)

al-go-rithm-
|| XX ||X |
alKhwariz-mi
(4 gaps, 3 mm)

NCBI BLAST DNA Alignment

Comparing Bird Songs

Florian et al. Hidden Markov Models in the Neurosciences

Tracing Textual Influences

This later play
by Markham
references
Shakespeare’s
poem.

Common
passages
identified by
sequence
alignment
algorithms.

Example from
Horton, Olsen, Roe,
Digital Studies / Le
champ
numérique, Vol 2,
No 1 (2010)

The String Alignment Problem

Parameters:

• “gap” is the cost of inserting a “-” character, representing an insertion
or deletion

• cost(x,y) is the cost of aligning character x with character y.
In the simplest case, cost(x,x) = 0 and cost(x,y) = mismatch penalty.

Goal:

• Can compute the edit distance by finding the lowest cost
alignment.

• Cost of an alignment is: sum of the cost(x,y) for the pairs of characters
that are aligned + gap × number of - characters inserted.

Another View: Alignment as a Matching

x x y z x x

y y x x y

xa=

b=

Each string is a set of nodes, one for each character.
Looking for a low-cost matching (pairing) between the sequences.

Cost of a matching is:

Edges are not allowed to cross!

Algorithm for Computing Edit Distance

Consider the last characters of each string:

a = a1a2a3a4...am
b = b1b2b3b4...bn

One of these possibilities must hold:

1. (am, bn) are matched to each other

2. am is not matched at all

3. bn is not matched at all

4. am is matched to some bj (j ≠ n) and bn is matched to some ak (k ≠ m).

Algorithm for Computing Edit Distance

Consider the last characters of each string:

a = a1a2a3a4...am
b = b1b2b3b4...bn

One of these possibilities must hold:

1. (am, bn) are matched to each other

2. am is not matched at all

3. bn is not matched at all

4. am is matched to some bj (j ≠ n) and bn is matched to some ak (k ≠ m).

#4 can’t happen! Why?

No Crossing Rule Forbids #4
4. am is matched to some bj (j ≠ n) and bn is matched to some ak (k ≠ m).

a
m

b
n

a
k

b
k

So, the only possibilities for what happens to the last characters are:

1. (am, bn) are matched to each other

2. am is not matched at all

3. bn is not matched at all

Recursive Solution

Turn the 3 possibilities into 3 cases of a recurrence:

Cost of the optimal
alignment between
a1...ai and b1...bj

Written in terms of
the costs of smaller

problems

Key: we don’t know which of the 3 possibilities is the right one, so we try
them all.

Base case:

(Aligning i characters to 0 characters must use i gaps.)

Computing OPT(i,j) Efficiently
We’re ultimately interested in OPT(n,m), but we will compute all other
OPT(i,j) (i ≤ n, j ≤ m) on the way to computing OPT(n,m).

Store those values in a 2D array:

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

9g

8g

7g

6g

5g

4g

3g

2g

1g

0 1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g 12g

OPT(i, j)

OPT(i, j-1)

OPT(i-1, j)

OPT(i-1, j-1)

i

j

Filling in the 2D Array

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

9g

8g

7g

6g

5g

4g

3g

2g

1g

0 1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g 12g

Edit Distance Computation

EditDistance(X,Y):
 For i = 1,...,m: A[i,0] = i*gap
 For j = 1,...,n: A[0,j] = j*gap

 For i = 1,...,m:
 For j = 1,...,n:
 A[i,j] = min(
 cost(a[i],b[j]) + A[i-1,j-1],
 gap + A[i-1,j],
 gap + A[i,j-1]
)
 EndFor
 EndFor
 Return A[m,n]

Running Time
Number of entries in array = O(m × n), where m and n are the lengths of the
2 strings.

Filling in each entry takes constant O(1) time.

Total running time is O(mn).

Where’s the answer?

OPT(n,m) contains the edit distance between the two strings.

Why? By induction: EVERY cell contains the optimal edit distance between
some prefix of string 1 with some prefix of string 2.

Finding the actual alignment

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

9g

8g

7g

6g

5g

4g

3g

2g

1g

0 1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g 12g

OPT(i, j)

OPT(i, j-1)

OPT(i-1, j)

OPT(i-1, j-1)

i

j

Trace the arrows all the way back

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0 1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g 12g

9g

8g

7g

6g

5g

4g

3g

2g

1g

0

Outputting the Alignment
Build the alignment from right to left.

ACGT
A-GA

Follow the backtrack pointers starting from entry (n,m).

• If you follow a diagonal pointer, add both characters to the alignment,

• If you follow a left pointer, add a gap to the y-axis string and add the x-
axis character

• If you follow a down pointer, add the y-axis character and add a gap to
the x-axis string.

Another View: Recasting as a Graph

(m,n)

(0,0)

a1 a2 a3 a4 a5

b1

b2

b3

b4

gap

gap

edge from
(i-1,j-1) to (i,j)
has weight
cost(ai,bj)

Traceback path =
shortest path from (0,0)
to (m,n)

Dynamic Programming

The previous sequence alignment / edit distance algorithm is an example of
dynamic programming.

1. Optimal value of the original problem can be computed from some
similar subproblems.

2. There are only a polynomial # of subproblems

3. There is a “natural” ordering of subproblems, so that you can solve a
subproblem by only looking at smaller subproblems.

Main idea of dynamic programming: solve the
subproblems in an order so that when you need an answer,
it’s ready.

Requirements for DP to apply:

