

## Inexact alignment recap

- Affine gaps need 4 matrices: global score, score of alignments ending in a match, score of alignment ending in a gap in seq1, score of alignment ending in a gap in seq2.
- In the "real" world, inexact alignment is performed only where necessary heuristics pre-compute where an alignment is possible.
- Also, inexact alignment is easier if we bound the allowed error – only need to explore the neighborhood of the main diagonal in the DP matrix







| Multiple sequence alignment                                                                                                                |                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Simultaneously identify relationship between multiple                                                                                      |                                                                                                                                                                                                                                                                                                                                                     |
| sequence                                                                                                                                   | ?S                                                                                                                                                                                                                                                                                                                                                  |
| HBB_HUMAN<br>HBB_HORSE<br>HBA_HUMAN<br>HBA_HORSE<br>MYG_PHYCA<br>GLB5_PETMA<br>LGB2_LUPLU                                                  | FFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTF<br>FFDSFGDLSNPGAVMGNPKVKAHGKKVLHSFGEGVHHLDNLKGTF<br>YFPHF-DLSHGSAQVKGHGKKVADALTNAVAHVDDMPNAL<br>YFPHF-DLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL<br>KFDRFKHLKTEAEMKASEDLKKHGVTVLTALGAILKKKGHHEAEL<br>FFPKFKGLTTADQLKKSADVRWHAERIINAVNDAVASMDDTEKMS<br>LFSFLKGTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL<br>* : |
| <ul> <li>Note: multiple alignment implies (not necessarily<br/>optimal) pairwise alignment between the individual<br/>sequences</li> </ul> |                                                                                                                                                                                                                                                                                                                                                     |
| HBA_HUMAN<br>HBA_HORSE                                                                                                                     | YFPHF-DLSHGSAQVKGHGKKVADALTNAVAHVDDMPNAL<br>YFPHF-DLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL                                                                                                                                                                                                                                                                |

## Multiple alignment – formal definition

- M multiple sequence alignment for s<sub>1</sub>,...,s<sub>k</sub>
- D(s<sub>i</sub>,s<sub>i</sub>) optimal score of alignment between s<sub>i</sub>, s<sub>i</sub>
- d(s<sub>i</sub>,s<sub>i</sub>) score of alignment btwn s<sub>i</sub>, s<sub>i</sub> induced by M
- score of M d(M) = sum<sub>all pairs si, sj</sub> d(s<sub>i</sub>, s<sub>j</sub>)
- · also called sum-of-pairs
- Optimal multiple alignment minimizes d(M)
- Computing optimal d(M) is NP hard
- Note: in multiple alignment we think of "distance" rather than "similarity"



## But... it's expensive

- 3 sequences need to fill in the cube O(n<sup>3</sup>)
- k sequences k-dimensional cube O(n<sup>k</sup>) time/space
- There are tricks that can help similar to Al techniques for reducing the search space
- Basic idea if we can estimate optimal score, we can prune the search space.
- Note these are just heuristics not guaranteed to work faster

## Alternative – approximation algorithm

- Can we efficiently compute a multiple alignment with a score that's not too bad?
- The Star method:
  - build all k<sup>2</sup> pairwise alignments (O(k<sup>2</sup>n<sup>2</sup>))
  - pick sequence sc that is closest to all other sequences: sum  $_{si}$  D(sc,  $s_i$ ) is minimal over all choices of sc
  - iteratively align each sequence to sc
- Theorem: sum-of-pairs score of star alignment is at most twice as big as optimal multiple alignment score







