
1

CMSC423: Bioinformatic Algorithms,

Databases and Tools

Lecture 10

Sequence alignment: inexact
alignment, multiple sequence

alignment

Inexact alignment recap

• Affine gaps – need 4 matrices: global score, score of
alignments ending in a match, score of alignment
ending in a gap in seq1, score of alignment ending in

a gap in seq2.

• In the "real" world, inexact alignment is performed only
where necessary – heuristics pre-compute where an
alignment is possible.

• Also, inexact alignment is easier if we bound the
allowed error – only need to explore the neighborhood
of the main diagonal in the DP matrix

2

Chaining approach

• Extends the FASTA idea

• Search for exact matches

• Find the longest consistent chain of exact matches

• Fill in the gaps in the chain using Smith-Waterman

• This is the approach used by MUMmer (Delcher et al.)

Chaining in 1-D

• Input: multiple overlapping intervals on a line

• Output: highest weight set of non-overlapping intervals

• Weight could be length of interval, or Smith-Waterman score,

etc.

• Sort the endpoints (starts, ends) of the intervals

• For every interval j, store V[j] – best score of a chain ending in j

• MAX – store highest V[j] seen sofar

• Process endpoints in increasing order of x coordinate

• If we encounter left end (start) of interval j

– V[j] = weight(j) + MAX

• If we encounter right end (end) of interval j

– MAX = max{V[j], MAX}

• Running time?

3

Chaining in 2-D

• Easy to do in O(n2) (n - # of intervals)

• View alignments as "boxes"

• All boxes in a chain must follow each other in a "diagonal"

order, i.e. the range of the x coordinates and y coordinates of

any two boxes in a chain cannot overlap

• Similar to 1-D approach except at each step we must check if

current box can extend any of the previously built chains

• V[j] = maxall previous boxes k {V[k] + weight(j)}

• More complex algorithm leads to O(n log n) running time

Multiple sequence alignment

• Simultaneously identify relationship between multiple
sequences

• Note: multiple alignment implies (not necessarily
optimal) pairwise alignment between the individual
sequences

HBB_HUMAN FFESFGDLSTPDAVMGNPKVKAHGKKVL-----GAFSDGLAHLDNLKGTF

HBB_HORSE FFDSFGDLSNPGAVMGNPKVKAHGKKVL-----HSFGEGVHHLDNLKGTF

HBA_HUMAN YFPHF-DLS-----HGSAQVKGHGKKVA-----DALTNAVAHVDDMPNAL

HBA_HORSE YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVGHLDDLPGAL

MYG_PHYCA KFDRFKHLKTEAEMKASEDLKKHGVTVL-----TALGAILKKKGHHEAEL

GLB5_PETMA FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS

LGB2_LUPLU LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL

* : . . .:: *. : :. :

HBA_HUMAN YFPHF-DLS-----HGSAQVKGHGKKVA-----DALTNAVAHVDDMPNAL

HBA_HORSE YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVGHLDDLPGAL

4

Multiple alignment – formal definition

• M – multiple sequence alignment for s1,...,sk

• D(si,sj) – optimal score of alignment between si, sj

• d(si,sj) – score of alignment btwn si, sj induced by M

• score of M d(M) = sumall pairs si, sj d(si, sj)

• also called sum-of-pairs

• Optimal multiple alignment minimizes d(M)

• Computing optimal d(M) is NP hard

• Note: in multiple alignment we think of "distance"
rather than "similarity"

But....here's a solution

• Dynamic programming solution. e.g. 3 sequences

• Score(i, j, k) – optimal alignment between s1[1..i],
s2[1..j], s3[1..k] – do DP as usual

• s(i,j,k) = max {

s(i-1, j-1, k-1) +

match(s1[i], s2[j], s3[k]),

...

s1
s2

s3

5

But... it's expensive

• 3 sequences – need to fill in the cube O(n3)

• k sequences – k-dimensional cube O(nk) time/space

• There are tricks that can help – similar to AI
techniques for reducing the search space

• Basic idea – if we can estimate optimal score, we can

prune the search space.

• Note – these are just heuristics – not guaranteed to
work faster

Alternative – approximation algorithm

• Can we efficiently compute a multiple alignment with
a score that's not too bad?

• The Star method:

– build all k2 pairwise alignments (O(k2n2))

– pick sequence sc that is closest to all other sequences:

sum si D(sc, si) is minimal over all choices of sc

– iteratively align each sequence to sc

• Theorem: sum-of-pairs score of star alignment is at
most twice as big as optimal multiple alignment score

6

Iterative alignment

• Take sequences si in order:

– align s1 with sc - results in gaps being inserted in both

sequences

– align s2 with sc - if gaps must be inserted – insert in

previously aligned sequences

– and so on (note: if gaps coincide with previously introduced
gaps no need to change previously aligned sequences)

SC YFPHFDLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL

SC YFPHFDLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL

S1 YFPHFDLSHG-AQVKG--KKVADALTNAVAHVDDMPNAL

SC YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVAHLDDLPGAL

S1 YFPHF-DLS-----HG-AQVKG—GKKVA-----DALTNAVAHVDDMPNAL

S2 FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS

SC YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVAHLDDLPGAL

S1 YFPHF-DLS-----HG-AQVKG—GKKVA-----DALTNAVAHVDDMPNAL

S2 FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS

S3 LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL

Theorem proof

• Theorem: star alignment is 2-optimal

• Assumption: distances obey triangle inequality

OPT = �si,sj d*(si,sj) � �si,sj D(si,sj)� k �si D(si, sc)

STAR = �si,sj d(si,sj) � �siD(si, sc) + �sjD(sj, sc)

= 2k �siD(si, sc)

=> STAR/OPT � 2 Q.E.D

sc
si

sj

7

Consensus sequence

• For every column j in the alignment, pick the amino-acid AA

that minimizes �id(AA, Si[j]) (usually becomes majority rule)

• Intuitively – this is the sequence of the ancestor of all the

sequences in the multiple alignment

• We can define the multiple alignment problem as:

– find the multiple alignment that minimizes �iD(CO, Si)

• Related to "Steiner" string problem:

– find a string S* and a multiple alignment such that �iD(S*, Si)

is minimal

• Both formulations are NP hard

CO YFPHFKDLS-----HGSAQVKAHGKKVG-----DALTLAVAHVDDTPGAL

S1 YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVAHLDDLPGAL

S2 YFPHF-DLS-----HG-AQVKG—GKKVA-----DALTNAVAHVDDMPNAL

S3 FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS

S4 LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL

Iterative alignment revisited

• Pick a sequence (e.g. SC) as a starting point

• Align S1 to it & build consensus for the alignment

• Take S2 and align it to the consensus (instead of SC)

• repeat...

• Problem: consensus (or any single sequence) ignores the other

sequences being aligned.

• Solution: keep track of % of each amino-acid aligned in each

column

• score of alignment to profile – combination of scores to each

AA.

S1 YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVAHLDDLPGAL

S2 YFPHF-DLS-----HG-AQVKG—GKKVA-----DALTNAVAHVDDMPNAL

S3 FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS

S4 LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL

50% S

25% N

25% -100% F
75% A

25% Q

