CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 10

Sequence alignment: inexact alignment, multiple sequence
alignment

Inexact alignment recap

- Affine gaps - need 4 matrices: global score, score of alignments ending in a match, score of alignment ending in a gap in seq1, score of alignment ending in a gap in seq2.
- In the "real" world, inexact alignment is performed only where necessary - heuristics pre-compute where an alignment is possible.
- Also, inexact alignment is easier if we bound the allowed error - only need to explore the neighborhood of the main diagonal in the DP matrix

Chaining approach

- Extends the FASTA idea
- Search for exact matches
- Find the longest consistent chain of exact matches
- Fill in the gaps in the chain using Smith-Waterman

- This is the approach used by MUMmer (Delcher et al.)

Chaining in 1-D

- Input: multiple overlapping intervals on a line
- Output: highest weight set of non-overlapping intervals
- Weight could be length of interval, or Smith-Waterman score, etc.

- Sort the endpoints (starts, ends) of the intervals
- For every interval j, store $V[j]$ - best score of a chain ending in j
- MAX - store highest V[j] seen sofar
- Process endpoints in increasing order of x coordinate
- If we encounter left end (start) of interval j
$-\mathrm{V}[\mathrm{j}=$ weight $(\mathrm{j})+\mathrm{MAX}$
- If we encounter right end (end) of interval j
$-\mathrm{MAX}=\max \{\mathrm{V}[\mathrm{j}], \mathrm{MAX}\}$
- Running time?

Chaining in 2-D

- Easy to do in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ (n - \# of intervals)
- View alignments as "boxes"
- All boxes in a chain must follow each other in a "diagonal" order, i.e. the range of the x coordinates and y coordinates of any two boxes in a chain cannot overlap
- Similar to 1-D approach except at each step we must check if current box can extend any of the previously built chains
- $\mathrm{V}[\mathrm{j}]=\max _{\text {all previous boxes } k}\{\mathrm{~V}[\mathrm{k}]+$ weight $(\mathrm{j})\}$
- More complex algorithm leads to $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ running time

Multiple sequence alignment

- Simultaneously identify relationship between multiple sequences

HBB_HUMAN
HBB_HORSE
HBA_HUMAN
HBA_HORSE MYG_PHYCA GLB5_PETMA LGB2_LUPLU

> FFESFGDLSTPDAVMGNPKVKAHGKKVL------GAFSDGLAHLDNLKGTF FFDSFGDLSNPGAVMGNPKVKAHGKKVL------HSFGEGVHHLDNLKGTF YFPHF-DLS-----HGSAQVKGHGKKVA-----DALTNAVAHVDDMPNAL YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVGHLDDLPGAL KFDRFKHLKTEAEMKASEDLKKHGVTVL------TALGAILKKKGHHEAEL FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL * .

- Note: multiple alignment implies (not necessarily optimal) pairwise alignment between the individual sequences

```
HBA_HUMAN
    YFPHF-DLS-----HGSAQVKGHGKKVA-----DALTNAVAHVDDMPNAL
HBA_HORSE YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVGHLDDLPGAL
```


Multiple alignment - formal definition

- M - multiple sequence alignment for $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{k}}$
- $\mathrm{D}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right)$ - optimal score of alignment between $\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}$
- $\mathrm{d}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right)$ - score of alignment btwn $\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}$ induced by M
- score of $\mathrm{Md}(\mathrm{M})=\operatorname{sum}_{\text {all pairs si, sj}} \mathrm{d}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right)$
- also called sum-of-pairs
- Optimal multiple alignment minimizes $d(M)$
- Computing optimal $\mathrm{d}(\mathrm{M})$ is NP hard
- Note: in multiple alignment we think of "distance" rather than "similarity"

But....here's a solution

- Dynamic programming solution. e.g. 3 sequences
- Score(i, j, k) - optimal alignment between s1[1..i], s2[1..j], s3[1..k] - do DP as usual
- $s(i, j, k)=\max \{$
$s(i-1, j-1, k-1)+$
match(s1[i], s2[j], s3[k]),

But... it's expensive

- 3 sequences - need to fill in the cube $O\left(n^{3}\right)$
- k sequences - k-dimensional cube $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ time/space
- There are tricks that can help - similar to AI techniques for reducing the search space
- Basic idea - if we can estimate optimal score, we can prune the search space.
- Note - these are just heuristics - not guaranteed to work faster

Alternative - approximation algorithm

- Can we efficiently compute a multiple alignment with a score that's not too bad?
- The Star method:
- build all k^{2} pairwise alignments ($O\left(k^{2} n^{2}\right)$)
- pick sequence sc that is closest to all other sequences: sum ${ }_{\text {si }} \mathrm{D}\left(\mathrm{sc}, \mathrm{s}_{\mathrm{i}}\right)$ is minimal over all choices of sc
- iteratively align each sequence to sc
- Theorem: sum-of-pairs score of star alignment is at most twice as big as optimal multiple alignment score

Iterative alignment

SC YFPHFDLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL

- Take sequences si in order:
- align s1 with sc - results in gaps being inserted in both sequences

SC YFPHFDLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL
S1 YFPHFDLSHG-AQVKG--KKVADALTNAVAHVDDMPNAL

- align s2 with sc - if gaps must be inserted - insert in previously aligned sequences

$$
\begin{array}{ll}
\text { SC } & \text { YFPHF-DLS------HGSAQVKAHGKKVG------DALTLAVAHLDDLPGAL } \\
\text { S1 } & \text { YFPHF-DLS-----HG-AQVKG-GKKVA-----DALTNAVAHVDDMPNAL } \\
\text { S2 } & \text { FFPKFKGLTTADQLKKSADVRWHAERII------NAVNDAVASMDDTEKMS }
\end{array}
$$

- and so on (note: if gaps coincide with previously introduced gaps no need to change previously aligned sequences)

SC YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVAHLDDLPGAL
S1 YFPHF-DLS-----HG-AQVKG-GKKVA-----DALTNAVAHVDDMPNAL
S2 FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS
S3 LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL

Theorem proof

- Theorem: star alignment is 2-optimal
- Assumption: distances obey triangle inequality

OPT $=\sum_{\mathrm{si}, \mathrm{sj}} \mathrm{d}^{*}\left(\mathrm{~s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right) \geq \sum_{\mathrm{si}, \mathrm{sj}} \mathrm{D}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right) \geq \mathrm{k} \sum_{\mathrm{si}} \mathrm{D}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{sc}\right)$
STAR $=\sum_{\mathrm{si}, \mathrm{sj}} \mathrm{d}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right) \leq \sum_{\mathrm{si}} \mathrm{D}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{sc}\right)+\sum_{\mathrm{sj}} \mathrm{D}\left(\mathrm{s}_{\mathrm{j}}, \mathrm{sc}\right)$
$=2 \mathrm{k} \sum_{\mathrm{si}} \mathrm{D}(\mathrm{s}, \mathrm{sc})$
=> STAR/OPT ≤ 2
Q.E.D

Consensus sequence

- For every column j in the alignment, pick the amino-acid AA that minimizes $\sum_{i} d\left(A A, S_{i}[j]\right)$ (usually becomes majority rule)
- Intuitively - this is the sequence of the ancestor of all the sequences in the multiple alignment
- We can define the multiple alignment problem as:
- find the multiple alignment that minimizes $\sum_{i} D\left(C O, S_{i}\right)$
- Related to "Steiner" string problem:
- find a string S^{*} and a multiple alignment such that $\sum_{i} D\left(S^{*}, S_{i}\right)$ is minimal
- Both formulations are NP hard

CO YFPHFKDLS-----HGSAQVKAHGKKVG-----DALTLAVAHVDDTPGAL
S1 YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVAHLDDLPGAL
S2 YFPHF-DLS-----HG-AQVKG-GKKVA-----DALTNAVAHVDDMPNAL
S3 FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS
S4 LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL

Iterative alignment revisited

- Pick a sequence (e.g. SC) as a starting point
- Align S1 to it \& build consensus for the alignment
- Take S2 and align it to the consensus (instead of SC)
- repeat...
- Problem: consensus (or any single sequence) ignores the other sequences being aligned.
- Solution: keep track of \% of each amino-acid aligned in each column
- score of alignment to profile - combination of scores to each AA.

100\% F	$\begin{aligned} & 50 \% \text { S } \\ & 25 \% ~ N \\ & 25 \%- \end{aligned}$	75% 25\% Q
S1 YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVAHLDDLPGAL		
S2 YFPHF-DLS-----HG-AQVKG-GKKVA-----DALTNAVAHVDDMPNAL		
S3 FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS		
S4 LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL		

