CMSC423: Bioinformatic Algorithms,
Databases and Tools
Lecture 10

Sequence alignment: inexact
alignment, multiple sequence
alignment

Inexact alignment recap

Affine gaps — need 4 matrices: global score, score of
alignments ending in a match, score of alignment
ending in a gap in seq1, score of alignment ending in
a gap in seq2.

In the "real" world, inexact alignment is performed only
where necessary — heuristics pre-compute where an
alignment is possible.

Also, inexact alignment is easier if we bound the
allowed error — only need to explore the neighborhood
of the main diagonal in the DP matrix

Chaining approach
Extends the FASTA idea
Search for exact matches
Find the longest consistent chain of exact matches
Fill in the gaps in the chain using Smith-Waterman

h \

N\ AN

This is the approach used by MUMmer (Delcher et al.)

Chaining in 1-D
Input: multiple overlapping intervals on a line

Output: highest weight set of non-overlapping intervals

Weight could be length of interval, or Smith-Waterman score,
etc.

Sort the endpoints (starts, ends) of the intervals

For every interval j, store V[j] — best score of a chain ending in |
MAX — store highest VJ[j] seen sofar

Process endpoints in increasing order of x coordinate

If we encounter left end (start) of interval |

— V[j] = weight(j) + MAX

If we encounter right end (end) of interval |

— MAX = max{V[j], MAX}

Running time?

Chaining in 2-D
« Easyto doin O(n?) (n - # of intervals)

* View alignments as "boxes"

» All boxes in a chain must follow each other in a "diagonal”
order, i.e. the range of the x coordinates and y coordinates of
any two boxes in a chain cannot overlap

« Similar to 1-D approach except at each step we must check if
current box can extend any of the previously built chains

* VU] = maXy, previous boxes k {V[k] + Weight(j)}
* More complex algorithm leads to O(n log n) running time

N N i!
fffffff . V.
'N

Multiple sequence alignment

« Simultaneously identify relationship between multiple
sequences

HBB_HUMAN FFESFGDLSTPDAVMGNPKVKAHGKKVL-————— GAFSDGLAHLDNLKGTF
HBB_HORSE FEFDSFGDLSNPGAVMGNPKVKAHGKKVL-———— HSFGEGVHHLDNLKGTF
HBA_ HUMAN YFPHF-DLS————— HGSAQVKGHGKKVA-———— DALTNAVAHVDDMPNAL
HBA_ HORSE YFPHF-DLS————— HGSAQVKAHGKKVG————— DALTLAVGHLDDLPGAL
MYG_PHYCA KFDRFKHLKTEAEMKASEDLKKHGVIVL-———— TALGAILKKKGHHEAEL
GLB5_PETMA FFPKFKGLTTADQLKKSADVRWHAERII-————— NAVNDAVASMDDTEKMS
LGB2_LUPLU LFSFLKGTSEVP-—QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL

* . .« K . .

« Note: multiple alignment implies (not necessarily
optimal) pairwise alignment between the individual
sequences

HBA HUMAN YFPHF-DLS————— HGSAQVKGHGKKVA-———— DALTNAVAHVDDMPNAL
HBA_ HORSE YFPHF-DLS————— HGSAQVKAHGKKVG————— DALTLAVGHLDDLPGAL

Multiple alignment — formal definition

« M — multiple sequence alignment for sq,...,S
* D(s;s)) — optimal score of alignment between s;, s;

* d(s;,s)) — score of alignment btwn s;, s; induced by M
* score of M d(M) = sumy pairs si, sj A(Si» Sj)

ir 2
+ also called sum-of-pairs
» Optimal multiple alignment minimizes d(M)
» Computing optimal d(M) is NP hard

» Note: in multiple alignment we think of "distance"
rather than "similarity"

But....here's a solution
« Dynamic programming solution. e.g. 3 sequences

» Score(i, j, k) — optimal alignment between s1[1..1],
s2[1..j], s3[1..k] — do DP as usual

S1

Sz
* 5(i,j,K) = max {

s(i-1, -1, k-1) + |
match(s1[i], s2[j], s3[k]), S

But... it's expensive

3 sequences — need to fill in the cube O(n3)
k sequences — k-dimensional cube O(nk) time/space

There are tricks that can help — similar to Al
techniques for reducing the search space

Basic idea — if we can estimate optimal score, we can
prune the search space.

Note — these are just heuristics — not guaranteed to
work faster

Alternative — approximation algorithm

Can we efficiently compute a multiple alignment with
a score that's not too bad?

The Star method:

— build all k2 pairwise alignments (O(k2n2))

— pick sequence sc that is closest to all other sequences:
sum ; D(sc, s;) is minimal over all choices of sc

— iteratively align each sequence to sc

Theorem: sum-of-pairs score of star alignment is at
most twice as big as optimal multiple alignment score

lterative alignment

SC YFPHFDLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL

» Take sequences si in order:

— align s1 with sc - results in gaps being inserted in both

sequences
SC YFPHFDLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL
S1 YFPHFDLSHG-AQVKG--KKVADALTNAVAHVDDMPNAL

— align s2 with sc - if gaps must be inserted — insert in
previously aligned sequences

SC YFPHF-DLS————-— HGSAQVKAHGKKVG————— DALTLAVAHLDDLPGAL
S1 YFPHF-DLS—-———-— HG-AQVKG—GKKVA-———— DALTNAVAHVDDMPNAL
S2 FFPKFKGLTTADQLKKSADVRWHAERII-———-— NAVNDAVASMDDTEKMS

— and so on (note: if gaps coincide with previously introduced
gaps no need to change previously aligned sequences)

SC YFPHF-DLS————-— HGSAQVKAHGKKVG————— DALTLAVAHLDDLPGAL
S1 YFPHF-DLS———---— HG-AQVKG—GKKVA-———— DALTNAVAHVDDMPNAL
S2 FFPKFKGLTTADQLKKSADVRWHAERII-—-—-— NAVNDAVASMDDTEKMS

S3 LFSFLKGTSEVP-—-QNNPELQAHAGKVEFKLVYEAAIQLQVIGVVVTDATL

Theorem proof

* Theorem: star alignment is 2-optimal
* Assumption: distances obey triangle inequality
OPT = 35 d°(si.8) 2 25 D(s1,8p)2 k 2 D(s;, sc)
STAR = 35 d(s;.8) = 25D(s;, sC) + 2 D(s;, sc)

= 2K ZsiD(Sis SC)

=> STAR/OPT =2 Q.E.D

Consensus sequence

For every column j in the alignment, pick the amino-acid AA
that minimizes > ,d(AA, Sj[j]) (usually becomes majority rule)

Intuitively — this is the sequence of the ancestor of all the
sequences in the multiple alignment

We can define the multiple alignment problem as:

— find the multiple alignment that minimizes ,D(CO, S)

Related to "Steiner" string problem:

— find a string S* and a multiple alignment such that >,D(S*, S,
is minimal

Both formulations are NP hard

CO YFPHFKDLS————— HGSAQVKAHGKKVG————— DALTLAVAHVDDTPGAL
S1 YFPHF-DLS————— HGSAQVKAHGKKVG————— DALTLAVAHLDDLPGAL
S2 YFPHF-DLS———-—— HG-AQVKG—GKKVA-———— DALTNAVAHVDDMPNAL
S3 FFPKFKGLTTADQLKKSADVRWHAERII-——-—-— NAVNDAVASMDDTEKMS

S4 LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL

lterative alignment revisited

Pick a sequence (e.g. SC) as a starting point

Align S1 to it & build consensus for the alignment
Take S2 and align it to the consensus (instead of SC)
repeat...

Problem: consensus (or any single sequence) ignores the other
sequences being aligned.

Solution: keep track of % of each amino-acid aligned in each
column

score of alignment to profile — combination of scores to each

AA. 50% S
25% N 75% A
25% - 25% Q
Sl Y%PHF*DLS fffff HG%AQVKAHGKKVG fffff DALTLAVAHLDDLPGAL
S2 YFPHF-DLS————— HG-AQVKG—GKKVA-———— DALTNAVAHVDDMPNAL
S3 FFPKFKGLTTADQLKKSADVRWHAERII-———— NAVNDAVASMDDTEKMS

S4 LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTIDATL

