CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 12

Phylogenetic trees
Phylogenetic tree display
Phylogenetic analysis

Sankoff's algorithm

- At each node v in the tree store $s(v, t)$ - best parsimony score for subtree rooted at v if character stored at v is t
- Traverse the tree in post-order and update $s(v, t)$ as follows
- assume node v has children u and w
$-\mathrm{s}(\mathrm{v}, \mathrm{t})=\min _{\mathrm{i}}\{\mathrm{s}(\mathrm{u}, \mathrm{i})+\mathrm{score}(\mathrm{i}, \mathrm{t})\}+\min _{\mathrm{j}}\{\mathrm{s}(\mathrm{w}, \mathrm{j})+\mathrm{score}(\mathrm{j}, \mathrm{t})\}$
- Character at root will be the one that maximizes s (root, t)
- Note - this solves the weighted version. For unweighted set score (i,i) = 0, score(i,j) = 1 for any i, j

Sankoff's algorithm - example

$$
s(v, t)=\operatorname{mini}\{s(u, i)+\operatorname{score}(i, t)\}+\operatorname{minj}\{s(w, j)+\operatorname{score}(j, t)\}
$$

Trees as clustering

- Start with a distance matrix - distance (e.g. alignment distance) between any two sequences (leaves)
- Intuitively - want to cluster together the most similar sequences
- UPGMA - Unweighted Pair Group Method using Arithmetic averages
- Build pairwise distance matrix (e.g. from a multiple alignment)
- Pick pair of sequences that are closest to each other and cluster them create internal node that has the sequences as children
- Repeat, including newly created internal nodes in the distance matrix

- Key element - must be able to quickly compute distance between clusters (internal nodes) - weighted distance

$$
D\left(c l_{1}, c l_{2}\right)=\frac{1}{\left|c l_{1}\right|\left|c l_{2}\right|} \sum_{p \in c l_{1}, q \in l_{2}} D(p, q)
$$

Trees as clustering

- Note that UPGMA does not estimate branch lengths - they are all assumed equal
- Neighbor-joining
- distance between two sequences is not sufficient - must also know how each sequence compares to every other sequence
- NJdist $(\mathrm{i}, \mathrm{j})=\mathrm{D}(\mathrm{i}, \mathrm{j})-\left(\mathrm{r}_{\mathrm{i}}+\mathrm{r}_{\mathrm{j}}\right) \quad-\mathrm{r}_{\mathrm{i}}, \mathrm{r}_{\mathrm{j}}$ correction factors

$$
r_{i}=\frac{1}{m-2} \sum_{k} D(i, k)
$$

- Pick two nodes with NJdist(i,j) minimal
- Create parent k s.t.
- $D(k, m)=0.5(D(i, m)+D(j, m)-D(i, j))$ for every other node m
$-D(i, k)=0.5\left(D(i, j)+r_{i}-r_{j}\right)$ - length of branch between i \&
$-D(j, k)=0.5\left(D(i, j)+r_{j}-r_{i}\right)$ length of branch between $j \& k$

Trees as clustering

- Note that both UPGMA and NJ assume distance matrix is additive: $\mathrm{D}(\mathrm{i}, \mathrm{j})+\mathrm{D}(\mathrm{j}, \mathrm{k})=\mathrm{D}(\mathrm{i}, \mathrm{k})$ - usually not true but close
- Also, NJ can be proven to build the optimal tree!
- But, simple alignment distance is not a good metric

Maximum likelihood

- For every branch S->T of length t, compute $P(T \mid S, t)$ likelihood that sequence S could have evolved in time t into sequence T
- Find tree that maximizes the likelihood
- Note that likelihood of a tree can be computed with an algorithm similar to Sankoffs
- However, no simple way to find a tree given the sequences - most approaches use heuristic search techniques
- Often, start with NJ tree - then "tweak" it to improve likelihood

From multiple alignment to tree

Three types of trees

Cladogram

Phylogram

All show the same evolutionary relationships, or branching orders, between the taxa.
from www.albany.edu/faculty/cs812/StewartTalk2.ppt

