
CMSC423: Bioinformatic Algorithms,
Databases and Tools

Lecture 13

Phylogenetic tree display

Phylogenetic analysis

Suffix trees

Different tree views

http://www-ab.informatik.uni-tuebingen.de/software/dendroscope/welcome.html

Drawing trees

• Trees are easy to draw – just need to figure out how
much space the leaves will take

• Step 1 – calculate how much space each node will
take (how many leaves from current node)

• Step 2 – spread out the nodes according to # of
leaves

• Many ways of optimizing: e.g. width, area

• For large trees

– 3D displays (there's more room in 3D)

– interactive displays (expand contract nodes as needed)

Analysis example

• Build multiple alignment (e.g. Muscle, ClustalW)

• Clean up alignment

– manual editing

– filters (pre-defined structure information)

• Build tree

– PAUP – parsimony & others

– Phylip – maximum likelihood

– Tree-Puzzle –maximum likelihood

– etc... (many packages)

• Integrated system – ARB

– www.arb-home.de

Intro to suffix trees

• Used in fast exact matching

• Basic idea: extend a trie – structure for storing multiple
strings

their
there
was
when

Suffix tree

• Extends trie of all suffixes of a string

ATCATG

TCATG

CATG

ATG

TG

G

AT

G T CATG

G CATG

G
CATG

4 1

6

5 2

3

Suffix tree ...cont

• To store in linear time – just store range in sequence
instead of string

• To ensure suffixes end at leaves, add $ char at end of
string

• ATCATG$
AT
1,2

G$
6,7

T
2,2

CATG$
3,7

G$
6,7

CATG$
3,7 G$

6,7

CATG$
3,7

4 1

6

5 2

3

$
7,7

7

Suffix links

• Link every node labeled aS for some string S to node
labeled S (note – it always exists)

AT
1,2

G$
6,7

T
2,2

CATG$
3,7

G$
6,7

CATG$
3,7 G$

6,7

CATG$
3,7

4 1

6

5 2

3

$
7,7

7

Suffix trees for matching

• Suffix trees use O(n) space

• Suffix trees can be constructed in O(n) time

• Is CAT part of ATCATG ?

• Match from root, char by char

• If run out of query – found match

• otherwise, there is no match

• intuition: CAT is the prefix
of some suffix

AT
1,2

G$
6,7

T
2,2

CATG$
3,7

G$
6,7

CATG$
3,7 G$

6,7

CATG$
3,7

4 1

6

5 2

3

$
7,7

7

Suffix links – useful for substring matches

• Does any part of AGATG match string AGCAGT?

AG
1,2

T$
6,7

G
2,2

CAGT$
3,7

T$
6,7

CAGT$
3,7 T$

6,7

CAGT$
3,7

4 1

6

5 2

3

$
7,7

7

Other uses

• Finding repeats

– internal nodes with multiple children – DNA that occurs in
multiple places in the genome

• Longest common substring of two strings

– build suffix tree of both strings. Find lowest internal node
that has leaves from both strings

• Note: running time for matching is O(|Pattern|), not
O(|Pattern| + |Text|) (though O(|Text|) was spent in
pre-processing

Suffix arrays

• Suffix trees are expensive > 20 bytes / base

• Suffix arrays: lexicographically sort all suffixes

• Can quickly find the correct suffix through binary
search

• Note: much less space, but longer running time (incur
a log n term)

ATG
ATCATG

CATG
G

TCATG
TG

Suffix arrays and compression

• Burrows-Wheeler transform

BANANA

BANANA
ANANAB
NANABA
ANABAN
NABANA
ABANAN

ANANAB
ABANAN
ANABAN
BANANA
NABANA
NANABA

sort BNNAAA
compress

character before the suffix

