CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 14

Genome assembly

Administrativia

- CMSC423 forum on CS forums http://forum.cs.umd.edu/
- Project questions?

Homework 3 answer

Unifying view of assembly

$=-\frac{\square}{\square}=\stackrel{-}{\square}=$ Assembly

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAACCCCTCCTATAACOACCCCCTCCTCACACCATATTT
AAAACTCGCCCCCTATCAACCOATCCCCCGCTACCTTCTACAGCCATCATTT
Scaffolding

Shortest common superstring problem

Given a set of strings, $\Sigma=\left(s_{1}, \ldots, s_{n}\right)$, determine the shortest string S such that every s_{i} is a sub-string of S.
NP-hard
... ACAGGACTGCACAGATTGATAG
approximations: $4,3,2.89, \ldots$ ACTGCACAGATTGATAGCTGA...

Greedy algorithm

II.

phrap, TIGR Assembler, CAP

Repeats

Imagine raindrops on a sidewalk

Lander-Waterman statistics

L = read length
T = minimum overlap
$G=$ genome size
$\mathrm{N}=$ number of reads
$\mathrm{c}=$ coverage (NL / G)
$\sigma=1-\mathrm{T} / \mathrm{L}$

E (\#islands) $=\mathrm{Ne}^{-\mathrm{co}}$
$E($ island size $)=L\left(e^{c \sigma}-1\right) / c+1-\sigma$ contig $=$ island with 2 or more reads

All pairs alignment

- Needed by the assembler
- Try all pairs - must consider ~ n^{2} pairs
- Smarter solution: only $n \times$ coverage (e.g. 8) pairs are possible
- Build a table of k-mers contained in sequences (single pass through the genome)
- Generate the pairs from k-mer table (single pass through kmer table)

Overlap-layout-consensus

Main entity: read
Relationship between reads: overlap

ACCTGA

Paths through graphs and assembly

- Hamiltonian circuit: visit each node (city) exactly once, returning to the start

Sequencing by hybridization

probes - all possible k-mers

AACAGTAGCTAGATG
AACA TAGC AGAT
ACAG AGCT GATG CAGT GCTA

AGTA CTAG
GTAG TAGA

Assembling SBH data

Main entity: oligomer (overlap)
Relationship between oligomers: adjacency
ACCTGATGCCAATTGCACT...

CTGAT follows CCTGA (they share 4 nucleotides: CTGA)

Problem: given all the k-mers, find the original string

In assembly: fake the SBH experiment - break the reads into k-mers

Eulerian circuit

- Eulerian circuit: visit each edge (bridge) exactly once and come back to the start

