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Gene finding



Sample midterm questions

• 6.22

• 8.6

• 10.12

• also see homeworks at 
http://www.cbcb.umd.edu/confcour/CMSC858E-syllabus.shtml



Gene finding/prediction

• Given a string of DNA, identify regions that might be 

genes

• Question: What does a gene look like?

• Start codon: ATG

• Stop codon: TGA, TAG, TAA

• Splicing: GT...intron...AG

• Also, DNA composition is different in genes –

mutations are more likely in the third position of 

codons.



Simple gene finder (in bacteria)

• Find all stop-codons in the genome

• For each stop-codon, identify an in-frame start-codon

upstream of it.  

• Each section between a start and a stop is called an 

ORF – open reading frame.

• The long ORFs are likely genes – evolution prevented 

stop codons from occuring

• 3 stop codons, 64 possible codons => in random DNA 

every 22nd codon is a stop. 

GGC TAG ATG AGG GCT CTA ACT ATG GGC GCG TAA



Gene finding as machine learning

• Main question: does the ORF look like a gene?

• Given a set of examples – genes we already know

• and a string of DNA (e.g. ORF)

• compute the likelihood that the ORF is a gene.

• Codon usage bias – not all codons for a same amino-

acid are equally likely

• K-mer (e.g. 6-mer) frequencies



UUU F 0.76  UCU S 0.27  UAU Y 0.77  UGU C 0.73 

UUC F 0.24  UCC S 0.08  UAC Y 0.23  UGC C 0.27  

UUA L 0.49  UCA S 0.23  UAA * 0.66  UGA * 0.14 

UUG L 0.13  UCG S 0.06  UAG * 0.20  UGG W 1.00 

CUU L 0.16  CCU P 0.28  CAU H 0.79  CGU R 0.26 

CUC L 0.04  CCC P 0.07  CAC H 0.21  CGC R 0.06

CUA L 0.14  CCA P 0.49  CAA Q 0.78  CGA R 0.16

CUG L 0.05  CCG P 0.16  CAG Q 0.22  CGG R 0.05 

AUU I 0.57  ACU T 0.36  AAU N 0.76  AGU S 0.28 

AUC I 0.15  ACC T 0.08  AAC N 0.24  AGC S 0.08

AUA I 0.28  ACA T 0.42  AAA K 0.74  AGA R 0.36 

AUG M 1.00  ACG T 0.15  AAG K 0.26  AGG R 0.11

GUU V 0.32  GCU A 0.34  GAU D 0.81  GGU G 0.30 

GUC V 0.07  GCC A 0.07  GAC D 0.19  GGC G 0.09

GUA V 0.43  GCA A 0.44  GAA E 0.75  GGA G 0.41 

GUG V 0.18  GCG A 0.15  GAG E 0.25  GGG G 0.20

Bacillus anthracis codon usage



A more general solution

• Hidden Markov models

• States, transition probabilities, emission probabilities

• p(Si|Sj) – probability of transitioning to state i if we are 

in state j

• p(�i|Sj) – probability of emitting symbol �i if we are in 

state j

S1 S2 S3... ...

p(S2|S1)

p(S1|S2)

p(S3|S2)

p(S2|S3)

p(S1|S1)

p(S2|S2) p(S3|S3)

p(�i|S1) p(�i|S1) p(�i|S1)



Why “Hidden”?

• Observers can see the emitted symbols of an HMM 

but have no ability to know which state the HMM is 

currently in.

• Thus, the goal is to infer the most likely hidden states 

of an HMM based on the given sequence of emitted 

symbols.



HMM Parameters

• �: set of emission characters.

– Ex.: � = {H, T} for coin tossing

– � = {1, 2, 3, 4, 5, 6} for dice tossing

– � = {A, C, T, G} for DNA

• Q: set of hidden states, each emitting symbols from �.

– Q={Fair,Biased} for coin tossing

– Q={gene, not gene} for bacteria

– Q={exon, intron, intergenic) for eukaryotes



HMM Parameters (cont’d)

• A = (akl): a |Q| x |Q| matrix of probability of changing 

from state k to state l.

– aFF = 0.9     aFB = 0.1

– aBF = 0.1     aBB = 0.9

• E = (ek(b)): a |Q| x |�| matrix of probability of emitting 

symbol b while being in state k.

– eF(0) = ½ eF(1) = ½

– eB(0) = ¼ eB(1) = ¾



GlimmerHMM model



Questions we can ask with HMMs

• Given an observed sequence of emitted characters (a 

string of DNA), what is the most likely sequence of 

states that generated the observed sequence?

– given a string of DNA and the model, break it up into genes

– solved by Viterbi algorithm

• Given an observed sequence of emitted characters, 

what is the most likely state the model was in at time 

t?

– given a string of DNA, how likely is it that a certain location is 
inside a gene?

– solved by forward-backward algorithm



Training – the key to HMMs

• So far we've assumed that all probabilities are known.

• The training problem: 

– given an HMM (just the states and connections)

– given several examples (e.g. known genes and intergenic
regions)

– compute the transition and emission probabilities

• Training is difficult!!  

• Baum-Welch algorithm – iterative optimization

– start with estimates of the probabilities

– run model with training data

– re-estimate probabilities based on performance on training 
data


