CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 19

Gene finding Motif finding

Viterbi algorithm

 Given an HMM and an output string, compute the most likely path through the HMM that would result in the given string

Viterbi algorithm

dynamic programming algorithm

Viterbi algorithm

- S(k,i) most likely path for x0..xi ends in state k
- $S(I, i + 1) = \max_k \{ S(k, i) * p(I|k) * p(emission of x_{i+1}|I) \}$ = $p(emission of x_{i+1}|I) * \max_k \{S(k,i) * p(I|k)\}$
- The optimal path is found by back-tracking
- Note: Viterbi is equivalent to finding longest path in a graph
- Implementation problem: underflow many products of very small values
- Solution: work in log-space
 - instead of probabilities use logarithm of probabilities
 - instead of products use sums

Forward-backward algorithm

- Given an HMM and an output string of length n, what is the probability that the HMM was in state k at time i < n?
- Similar dynamic programming as Viterbi however done twice:
 - from t0 to ti (forwards)
 - from tn to ti (backwards)
- In Viterbi recurrence replace max with $\boldsymbol{\Sigma}$
 - likelihood is a sum of probabilities all possible paths that go through state k at time i

Notes on training an HMM

- Gene finder output
 - a set of predictions (exon, intron, intergenic, etc.)
 - a probability (likelihood) for each prediction
- In addition to setting parameters for the model you also need to pick a threshold – how high should the probability be before you "believe" it.

Picking the "right" threshold

- Cross-validation (hold-out cross validation)
 - divide training set into Training and Hold sets
 - train in "Training"
 - test result on "Hold" adjust threshold until results look best
- k-fold cross-validation
 - divide training set into K sub-sets
 - train on K-1 sets and test on one of them
 - repeat for different choices of "test" set

Assessing accuracy

• Confusion matrix: compare predictions to truth

truth

		Gene	Not-gene
prediction	Gene	True positive	False positive Type I error
	Not-gene	False negative Type II error	True negative

Measures of accuracy

- Sensitivity (Sn, recall) TP/TP+FN
- Specificity (Sp) TN/TN+FP
- Precision TP/TP+FP
- Usually reported as (Sp, Sn), or (precision, recall).
- Also: F-score = 2*Precision*Recall/(Precision + Recall)

TP	FP
FN	TN

Receiver operating characteristic

