CMSC423: Bioinformatic Algorithms, Databases and Tools
Lecture 2

Molecular biology primer
Perl/Perl Modules

Administrative details

- Lecture notes and homework assignments can be found on Syllabus site.
RECAP

• DNA is a string formed with letters A, C, T, G (called nucleotides or bases)
• DNA is double-stranded – allows replication: transfer of genetic “code” from parents to offspring
• DNA is naturally oriented from 5’ to 3’ and the two strands are anti-parallel
• If you know the sequence of one strand, you can obtain the sequence of the other by reverse-complementation

\[
\begin{align*}
5’ &\text{ AGACCTAGTGCAGGCTACTACC 3’} \\
5’ &\text{ CCATCATCGCAGGCTACAGA 3’} \\
5’ &\text{ GGTAGTAGCCGTGCACTAGGCT 3’}
\end{align*}
\]

RECAP

• Central Dogma of molecular biology:
 – DNA – RNA (transcription)
 – RNA – Protein (translation)
• The transcribed segments of DNA are called “genes”
• Translation occurs in sets of 3 nucleotides – codons
• Each codon encodes one of 20 amino-acids and 3 stop-codons
• In many eukaryotes the genes are split into multiple exons, separated by introns: DNA segments that will not get translated
• The protein corresponding to a gene is translated from an RNA representing the concatenation of the exons of the gene
Alternative splicing examples

(a) Alternative selection of promoters (e.g., myosin primary transcript)

(b) Alternative selection of cleavage/polyadenylation sites (e.g., tropomyosin transcript)

(c) Intron retaining mode (e.g., transposase primary transcript)

(d) Exon cassette mode (e.g., troponin primary transcript)

Playing with DNA

Biologists can:

- Cut the DNA – restriction enzymes (often palindromes) (Nobel prize – Arber, Nathans, Smith)

 5’GAATTC 3’CTTAAG
 5’-G 3’-CTTA
 AATTC-3’ G-5’

- Attach “things” to DNA (either single or double-strand)

 TAGGCACGTTGCAACTACGSC
 TGCAACGT

- “Amplify” DNA – Polymerase Chain Reaction (Nobel prize – Mullis)
How does PCR work?

- 1. Start: 1 double-stranded molecule
- 1. Denature: 2 single-stranded molecules
- 1. Anneal: 2 single-stranded molecules with primers attached
- 1. Extend: 2 double-stranded molecules – one “long” (L) strand and one “short” (S) (terminated at a primer)
- 2. Start: 2 double-stranded molecules: L+S, L+S
- 2. Denature: 2 x L strands, 2 x S strands
- 2. Anneal: all strands with primers attached
- 2. Extend: 2 double-stranded molecules: L+S, L+S, 2 double-stranded molecules: S+SS, S+SS
SS – strand terminated at both ends with a primer
PCR Recurrences

- L_n, S_n, SS_n - # of strands of each type at cycle n
- $L_n = L_{n-1} = 2$
- $S_n = S_{n-1} + L_{n-1} = S_{n-1} + 2 = 2 \times (n-1) = O(n)$
- $SS_n = S_{n-1} + 2 \times SS_{n-1} = O(2^n)$

- The sequence between the primers (SS) is amplified exponentially – will quickly overtake the solution

Quantitative PCR

- Measure # of PCR cycles needed to reach a certain concentration of DNA – depends on initial # of molecules
- Used in diagnostics: e.g. is this a random Anthrax spore from the environment or lots of spores from an attack

http://www.dxsgenotyping.com/technology_main.htm
DNA sequencing

- Most techniques “trick” the polymerase into revealing the sequence
- The traditional method – Sanger sequencing – based on “terminator” bases – prevent the polymerase from extending the DNA
- Sanger sequencing is essentially PCR + terminator bases
- Other methods “spy” on the polymerase as it incorporates nucleotides

Sanger sequencing

pictures from http://www.uvm.edu/~cgep/Education/Sequence.html
The future of sequencing

- Single molecule sequencing - current technology requires many copies of DNA being sequenced - requires DNA amplification
- Massively-parallel sequencing - 100k sequencing reactions occurring at the same time

Sequencing by synthesis

Micro-fluidics

![Diagram of sequencing by synthesis and micro-fluidics](http://www.genetics.ucla.edu/sequencing/pyro.php http://www.usgenomics.com)

AGATTATCTAACAGCTACCCTCCATCA

The future of sequencing

Massively parallel sequencing

- each spot is a molecule or amplified from one molecule
- image processing used to track molecules during sequencing by synthesis
- often micro-fluidics/lab-on-a-chip used

- 454 Life Sciences – approx. 60 Mbp in 200 bp reads / 4 hr run
- Solexa Ltd. – approx. 1 Gbp in 30-40 bp reads / 3 day run

Not yet available:

- Helicos – single molecule sequencing
- Agencourt
- Applied Biosystems
- etc.

![Diagram of massively parallel sequencing](http://arep.med.harvard.edu/)