CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 21

Microarray data analysis
RNA folding

Hierarchical clustering

- UPGMA (remember from phylogenetic trees?)
- compute distance between genes (e.g. euclidean distance of expression vectors)
- join most similar genes
- repeat
- Key element - compute distance between a gene and a cluster, or between two clusters - average distance between all genes in the two clusters

k-means clustering

- Split data into exactly k clusters
- Basic algorithm:
- Create k arbitrary clusters - pick k points as cluster centers and assign each other point to the closest center
- Re-compute the center of each cluster
- Re-assign points to clusters
- Repeat
- Another approach: pick a point at and see if moving it to a different cluster will improve the quality of the overall solution. Repeat!

k-means clustering

- Measure of cluster goodness: mean square distance of each point to its nearest cluster center.
- $d($ Points, Centers $)=$ sum $\left(d(\text { point } i, \text { center })^{\wedge} 2\right) / n$

k-means clustering demo

Other clustering methods

- Principal component analysis
- "rotate" cloud of points until clusters become obvious
- essentially projection onto the appropriate plane or line
- Self Organizing Maps
- based on neural networks
- Clustering of time-series data

Clustering of time-series data

anti-correlated

un-correlated
http://www.cs.cmu.edu/~jernst/stem/

Assessing significance

- All clustering methods produce clusters EVEN IF NO CLUSTERS EXIST!!!
- Need to associate a confidence that the clusters are real
- Basic approach - bootstrapping
- randomly shuffle data labels (e.g. disease/no disease, or time-point)
- recompute clustering
- count how often the initial clusters appear in random data

RNA folding

- Function of RNA molecules depends on how they fold, based on nucleotide base-pairing

Types of structures

- Nested (hairpin)

- Pseudo-knots

Nussinov's algorithm

- Assumes no pseudo-knots
- Dynamic programming approach - maximize \# of pairings
- S - string of nucleotides representing the RNA molecule
- Sub-problem - F[i,j] - score of folding just S[i..j]
- Initial values: $F[i-1, i]=F[i, i]=F[i, i+1]=0$

Nussinov's algorithm

$F[i, j]$ is the maximum of:

II. $F[i, j-1]$

S[j] unpaired

III. $\mathrm{F}[i+1, j-1]+1$
if $S[i+1]$ complementary to $\mathrm{S}[\mathrm{j}-1]$
S[i] paired with S[i]

Branch

Questions

- In what order do we fill the dynamic programming table?
- How can we ensure that "loops" consist of at least k nucleotides?

