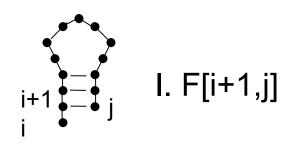
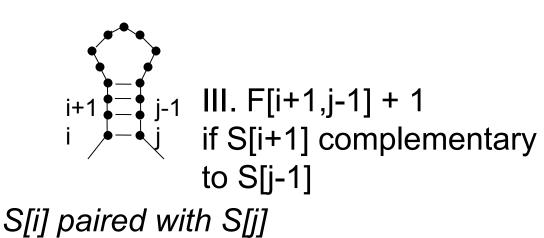
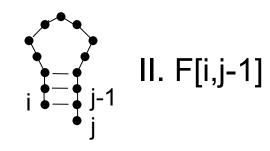
CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 22

RNA folding Protein folding

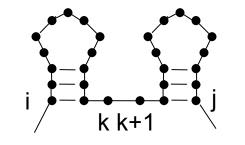

Nussinov's algorithm

- Assumes no pseudo-knots
- Dynamic programming approach maximize # of pairings


- S string of nucleotides representing the RNA molecule
- Sub-problem F[i,j] score of folding just S[i..j]
- Initial values: F[i-1,i] = F[i,i] = F[i, i+1] = 0


Nussinov's algorithm

F[i,j] is the maximum of:



S[i] unpaired

S[j] unpaired

IV. max_k F[i,k]+F[k+1,j]

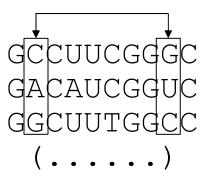
Branch

Questions

- In what order do we fill the dynamic programming table?
- How can we ensure that "loops" consist of at least k nucleotides?

	G	G	G	A	A	Α	U	С	С
G									
G G									
G									
A									
A									
A									
U									
U C C									
С									

 $\begin{cases} F[i+1, j] \\ F[i, j - 1] \\ F[i+1, j-1] + 1 \text{ (if paired)} \\ max_k F[i,k] + F[k+1,j] \end{cases}$


G G G A A A U C C

G G G Α Α Α U C C

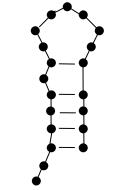
								1
Ο	0	0	Ο	0	0	1	2	3
0	0	0	0	0	0	1	2	3
	0	0	0	0	0	1	2	2
		0	0	0	0	• × 1 × 1	1	1
			0	0	0 *	1	1	1
				04	- 0	1	1	1
					0	0	0	0
						0	0	0
							0	Ο

GGGAAAUCC ((.(.))) .((..()))

From multiple alignment to structure

- Find columns in the alignment where mutations are correlated
- Mutual information how correlated are the columns?

$$M_{i,j} = \sum_{x_i, x_j} f_{x_i x_j} \log \left(\frac{f_{x_i x_j}}{f_{x_i} f_{x_j}} \right)$$


$$\begin{split} M_{i,j} &= \text{mutual information between columns i and j} \\ f_{xixj} &= \text{frequency of each of 16 pairs of nucleotides at columns i and j} \\ f_{xi} &= \text{frequency of each of 4 nucleotides at column i} \\ f_{xj} &= \text{frequency of each of 4 nucleotides at column j} \end{split}$$

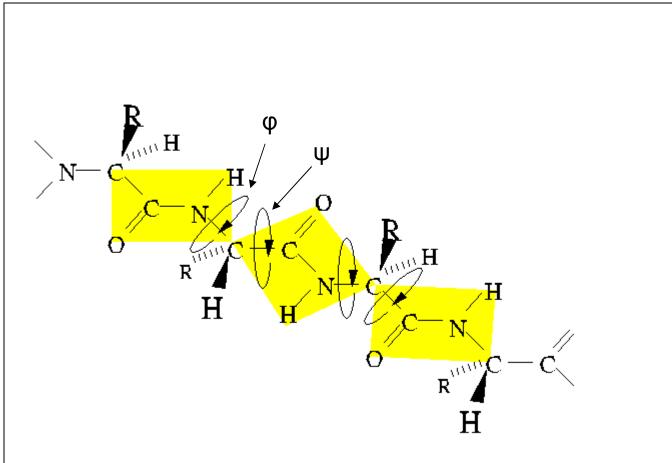
Mutual information

- Ranges from 0 to 2 for a 4-letter alphabet
- Correlated columns mutual information high
- Advantages:
 - Don't need to know how RNA folds pseudo-knots should "pop" out of the alignment
- Disadvantages:
 - Need many sequences in an alignment (to compute frequencies)
 - The aligned sequences must be sufficiently divergent (conserved columns provide no information)

A better objective function

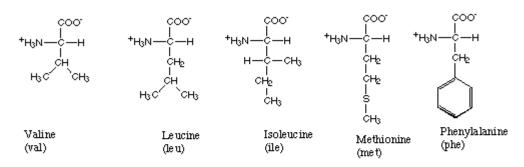
- Find the RNA fold that minimizes the Gibbs free energy
- Zucker's algorithm keeps track of:
 - Stacking energy f(# of base-pairs in a stem)
 - Loop energy f(length of loop)
 - Bulge energy f(length of bulge)
 - Dangle energy f(length of dangle)

- Computation is done with an extension of the traditional (Nussinov) dynamic programming approach
- One extension: compute sub-optimal folds
 during backtracking, try multiple paths
- Question: how do you change Nussinov's algorithm to allow the computation of the stacking energy? Hint: think affine gap penalties.

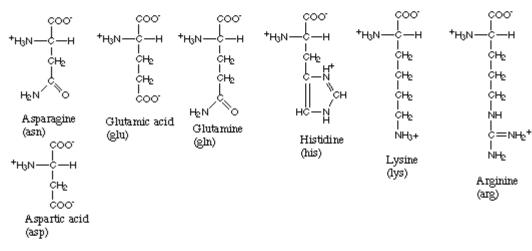

Protein folding

- Protein shape determines protein function
- Protein sequence determines protein shape (Anfinsen's experiment)
- Levinthal's paradox space of possible protein conformations is exponentially large, yet proteins fold fast (µsec – minutes).
- Corollary: proteins must "know" how to fold (i.e. they don't search the entire space of conformations)
- Note: much easier to find a protein's sequence than its structure

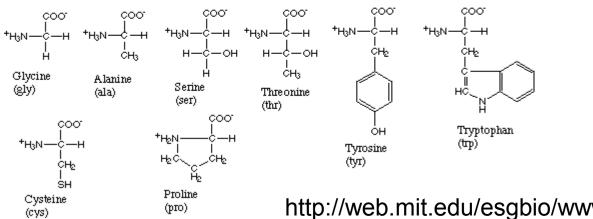
Protein folding


- Note: mis-folded proteins may cause disease (e.g. Creutzfeld-Jakob a.k.a. mad cow)
- Drugs (e.g. antibiotics) often inhibit protein function knowing structure can help design drugs
- Folding@home lend your computer's unused cycles to help fold proteins (like SETI@home) (do you believe in evolution or aliens ?)

Protein structure (primary structure = sequence)


http://www.tulane.edu/~biochem/med/second.htm

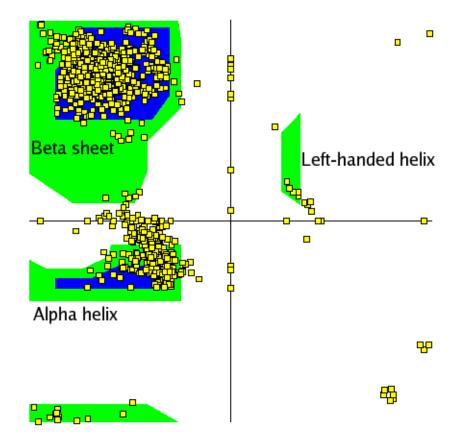
Amino acids with hydrophobic side groups

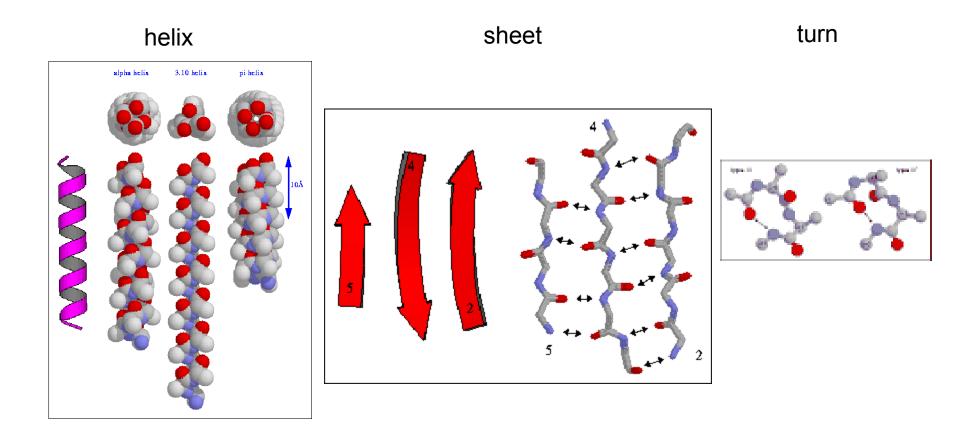


hate water

Amino acids with hydrophilic side groups

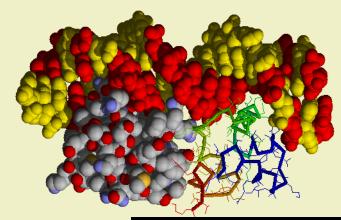
Amino acids that are in between

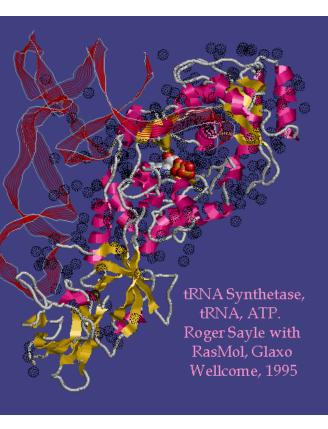



can't decide

http://web.mit.edu/esgbio/www/Im/proteins/aa/aminoacids.html

Not all bends equally likely Ramachandran plot


Secondary structure (motifs)


http://alpha2.bmc.uu.se/~kenth/bioinfo/structure/secondary/01.html

Tertiary structure (3D shape)

Phage CRO Repressor on DNA. Andrew Coulson & Roger Sayle with RasMol, University of Edinburgh, 1993

Roger Sayle with RasMol, 1995

http://www.umass.edu/microbio/rasmol/sayle1.htm

Folded shape: lowest free energy

- Energy components
 - electrostatic (~1/D2) (n2 terms)
 - van der Waals (n² terms)
 - hydrogen bonding (n terms)
 - "bending" (n terms)
 - solvent (water/salt) (?? terms)
 - exclusion principle (no two atoms share same volume)
- Energy minimzation
 - small perturbations & computation: hill climbing, simulated annealing, etc.
- Molecular dynamics