CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 24

Mass spectrometry Gene networks

Mass spectrometry

- Technique for measuring the mass-to-charge ratio of ions
- Basic idea
 - shoot ions into a magnetic field
 - deflection depends on mass
- Output of a mass-spectrometer
 - ions "sorted" by mass
 - for each mass bucket number of ions with that specific mass

Mass-spectrometry

http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/MassSpec/masspec1.htm

Tandem Mass Spectrometry

- First mass-spectrometer "focuses" on a specific protein
- Second mass-spectrometer breaks the protein into smaller chunks
- Problem: given the chunks, what was the original protein?

Peptide sequencing

 Peptide - a chunk of a protein, usually obtained by enzymatic cleavage of the protein (using trypsin)

- Problem: Given an MS spectrum (weights of fragments), what was the sequence of the peptide?
- Or: find the peptide (of mass m) that best matches the experimental data

Example...

- peptide: GPFNA
- N-terminal fragments G, GP, GPF, GPFN, GPFNA
- C-terminal fragments A, NA, FNA, PFNA, GPFNA
- The spectrum will contain:
 - masses of both C- and N-terminal fragments
 - masses of "partial" fragments (missing H20, or NH3)
 - noise
 - missing peaks
- How can we re-construct the sequence of the peptide?

Solutions?

Database search

- build database of "all possible" peptides (better all peptides observed in known proteins)
- match experimental spectrum to the database
- closest hit is our peptide
- Problems:
 - how do we score alignments?
 - matching with dynamic programming can be slow
 - database can be very large (20ⁿ n-length peptides, 10¹⁸ known peptides)

De novo peptide sequencing

- Key idea: peptide ladder
 - adjacent fragments differ by exactly the mass of one aminoacid
- If we can identify pairs of masses in the spectrum that differ by an amino-acid's mass we can "read" the peptide
- Simple algorithm
 - Start with highest weight W
 - Find weight W' that differs from W by exactly the weight of an amino-acid AA
 - We know that peptide starts (or ends) with amino-acid AA
 - Repeat with W'...

Theoretical Spectrum

Better algorithm

- Problems with simple algorithm
 - spectrum is mixture of C- and N-terminal fragments
 - spectrum contains masses for different ion types
 - spectrum contains errors
- Better solution
 - start with a spectrum
 - identify masses that likely represent the same fragment
 - build graph (spectral graph) that represents adjacency of fragments
 - nodes = fragments (or ion types)
 - edges = edge v->w indicates fragments v and w differ by exactly 1 amino-acid
 - path through this graph represents a peptide sequence

Some Mass Differences between Peaks Correspond to Amino Acids

More problems...

- Spectral graph may contain many paths many possible reconstructions
- Which path is the correct one?
- Solution: estimate probability that peptide implied by path is consistent with spectrum
- Basic idea:
 - each peptide fragment contributes k different ions (masses)
 - for each ion/fragment combination we can estimate probability that ion is produced by the fragment

 $score(fragment_i) = (\prod_{observed peaks} p(ion|fragment))(\prod_{missing peaks} (1 - p(ion|fragment)))$

 optimal path can now be computed with dynamic programming

Biological networks

- Genes/proteins do not exist in isolation
- Interactions between genes or proteins can be represented as graphs
- Examples:
 - metabolic pathways
 - regulatory networks
 - protein-protein interactions (e.g. yeast 2-hybrid)
 - genetic interactions (synthetic lethality)

CELLCYCLE

04110 11/11/05

