
1

CMSC423: Bioinformatic Algorithms,
Databases and Tools

Lecture 6

Sequence alignment: exact alignment

Z algorithm, KMP, Boyer-Moore

Homework 2 questions?

2

Reading assignment

• Check out the first three chapters in the textbook

Sequence alignment: exact matching

ACAGGTACAGTTCCCTCGACACCTACTACCTAAG
CCTACT
CCTACT

CCTACT

CCTACT

Text

Pattern

for i = 0 .. len(Text) {
for j = 0 .. len(Pattern) {

if (Pattern[j] != Text[i]) go to next i
}
if we got there pattern matches at i in Text

}

Running time = O(len(Text) * len(Pattern)) = O(mn)

3

Worst case?

AA

AAAAAAAAAAAAT

(m – n + 1) * n comparisons

Can we do better?

the Z algorithm (Gusfield)

For a string T, Z[i] is the length of the longest prefix of T[i..m]
that matches a prefix of T. Z[i] = 0 if the prefixes don't match.

T[0 .. Z[i]] = T[i .. i+Z[i] -1]

Z[i] i i + Z[i] - 1
A T

m

4

Z[i] i i + Z[i] - 1

Can the Z values help in matching?

Pattern Text

If there exists i, s.t. Z[i] = length(Pattern)
Pattern occurs in the Text starting at i

Create string Pattern$Text where $ is not in the alphabet

Can Z values be computed in linear time?

Z[1]?

AAAGGTACAGTTCCCTCGACACCTACTACCTAAG

compare T[1] with T[0], T[2] with T[1], etc. until mismatch

Z[1] = 2

This simple process is still expensive:
T[2] is compared when computing both Z[1] and Z[2].

Trick to computing Z values in linear time:
each comparison must involve a character that was
not compared before

Since there are only m characters in the string, the overall
of comparisons will be O(m).

5

Basic idea: 1-D dynamic programming

Can Z[i] be computed with the help of Z[j] for j < i?

i

j

Assume there exists j < i, s.t. j + Z[j] – 1 > i
then Z[i – j + 1] provides information about Z[i]

If there is no such j, simply compare characters T[i..] to T[0..]
since they have not been seen before.

i-j+1

Z[j]

Three cases
Let j < i be the coordinate that maximizes j + Z[j] – 1
(intuitively, the Z[j] that extends the furthest)

I. Z[i – j + 1] < Z[j] – i + j – 1 => Z[i] = Z[i – j + 1]

i

ji-j+1

Z[j]

i

ji-j+1

Z[j]

i

ji-j+1

Z[j]
A C C

II. Z[i – j + 1] > Z[j] – i + j – 1 => Z[i] = Z[j] –i + j - 1

III. Z[i – j + 1] > Z[j] – i + j – 1 => Z[i] = ??, compare from
i + Z[i – j + 1]

A C

??

6

Z algorithm, not just for matching

• Lempel-Ziv compression (e.g. gzip)

• Note: other exact matching algorithms used for data
compression (e.g. Burrows-Wheeler transform relates
to suffix arrays)

Z[i] i i + Z[i] - 1 n

if Z[i] = 0, just send/store the character T[i], otherwise,
instead of sending T[i..i+Z[i] – 1] (Z[i] – 1 characters/bytes)
simply send Z[i] (one number)

Knuth-Morris-Pratt algorithm

Given a Pattern and a Text, preprocess the Pattern to compute
sp[i] = length of longest prefix of P that matches a suffix of P[0..i]

isp[i]
P

T

i

j

A

CP

P'

Compare P with T until finding a mis-match (at coordinate i + 1
in P and j + 1 in T). Shift P such that first sp[i] characters
match T[j – sp[i] + 1 .. j]. Continue matching from T[i+1], P[sp[i]+1]

7

Boyer-Moore algorithm
Preprocess the pattern, computing, for every i, L[i] = largest
coordinate < n, s.t. P[i..n] matches a suffix of P[1..L[i]] (inverted
Z function)

iL[i]
P

T A

i
P C

j

CP'

Match the pattern backwards (starting at the right) until mismatch.
Shift the pattern such that P[L[i] – n + i + 1] matches at T[j]
Repeat.

Bad character rule: find character T[j – 1] in P and shift until
it matches. Choose the longest shift (btwn. suffix & char. rules)

A

