
1

CMSC423: Bioinformatic Algorithms, 

Databases and Tools

Lecture 9

Sequence alignment: inexact 
alignment

dynamic programming, gapped 
alignment, heuristics

Play around with alignments

• USC alignment library (seqaln)

http://www.mhoenicka.de/software/cygwinports/seqaln.html



2

Global alignment recap

C

-

-

A

G

A

C

T

G

A G GATGC

AGCGTAG

GTCAGAC

Value(A,A) = 10

Value(A,G) = -5

Value(A,-) = -2

Score[i,j] is the maximum of:

1. Score[i-1, j-1] + Value[S1[i-1],S2[j-1]]  (S1[i-1], S2[j-1] aligned)

2. Score[i – 1, j] + Value[S1[i], -]  (S1[i] aligned to gap)

3. Score[i, j – 1] + Value[-, S2[j]]  (S2[j] aligned to gap)

Global alignment recap

1920910140-14-28C

-28-24-20-16-12-8-40-

-24

-20

-16

-12

-8

-4

-

2024131434-10A

G

A

C

T

G

2410141848-6

1014378-6-2

-13

-9

-5

A

-2

2

6

G

-134812

048-31

-14-10-6-22

GATGC

AG-C-GTAG

-GTCAG-AC

Value(A,A) = 10

Value(A,G) = -5

Value(A,-) = -4

Score[i,j] is the maximum of:

1. Score[i-1, j-1] + Value[S1[i-1],S2[j-1]]  (S1[i-1], S2[j-1] aligned)

2. Score[i – 1, j] + Value[S1[i], -]  (S1[i] aligned to gap)

3. Score[i, j – 1] + Value[-, S2[j]]  (S2[j] aligned to gap)



3

Local alignment recap

C

-

-

A

G

A

C

T

G

A G GATGC

AGCGTAG

GTCAGAC

Value(A,A) = 10

Value(A,G) = -5

Value(A,-) = -2

Score[i,j] is the maximum of:

0. 0
1. Score[i-1, j-1] + Value[S1[i-1],S2[j-1]]  (S1[i-1], S2[j-1] aligned)

2. Score[i – 1, j] + Value[S1[i], -]  (S1[i] aligned to gap)

3. Score[i, j – 1] + Value[-, S2[j]]  (S2[j] aligned to gap)

How much do we pay for gaps?

• In the edit-distance/alignment framework

Cost(n gaps in a row) = n * Cost(gap)

• This doesn't work for e.g. RNA-DNA alignments

ACAGTTCGACTAGAGGACCTAGACCACTCTGT

TTCGA----------TAGACCAC

• Affine gap penalties

Cost(n gaps in a row) = Cost(gap open) + n * Cost(gap)

• Gap opening penalty is high, gap extension penalty is 
low (once we start a gap we might as well pile more 
gaps on top)



4

Dynamic programming solution

• Traditional 1-table approach doesn't work anymore

• Instead, use 4 tables:

– V – stores value of best alignment between S1[1..i], S2[1..j]

– G – best alignment between S1[1..i], S2[1..j] s.t. S1[i] aligned 

with S2[j]

– E – best alignment between S1[1..i], S2[1..j], s.t. alignment 

ends with gap in S1

– F – best alignment between S1[1..i], S2[1..j], s.t. alignment 

ends with gap in S2

• V[i,j] = max(E[i,j], F[i,j], G[i,j])

• As in traditional approach, find box in V matrix where 
V[i,j] is maximal.

Affine gap recurrences

• V[i,j] = max[E[i,j], F[i,j], G[i,j] ]

• G[i,j] = V[i-1, j-1] + Value(S1[i], S2[j])

– irrespective how we got here (hence use of V), S1[i] and 

S2[j] are matched

• E[i,j] = max{E[i, j-1], V[i, j-1] – GapOpen} – GapExtend

– either we add a gap in S1 to an existing one (E-GapExtend)

– or we add a gap in S1 when there was none (V-GapOpen-

GapExtend)

• F[i,j] = max{F[i-1, j], V[i-1, j] – GapOpen} – GapExtend

– either we add a gap in S2 to an existing one (F–GapExtend)

– or we add a gap in S2 when there was none (V-GapOpen-

GapExtend)



5

Running times

• All these algorithms run in O(mn) – quadratic time

• Note – this is significantly worse than exact matching

• On Wednesday we'll talk about speed-up opportunities

• BTW, how much space is needed?

• If we only need to find the best score (not the exact 
alignment as well) – O(min(m,n))

• If we need to find the best alignment – elegant divide 
and conquer algorithm leads to linear space solution.

Where do the alignment scores come from?

• PAM matrices

– PAM1 – based on frequency of mutations between closely 

related proteins (within 1 "evolutionary step")

– PAM 2 - ... within 2 evolutionary steps

– ... PAM 250 – commonly used

• BLOSUM matrices

– Frequency of mutations between proteins that are x% similar

– BLOSUM100 – based on proteins that are exactly the same 

(e.g. score(A,A) is defined but not score(A,G) )

– BLOSUM62 – commonly used

• gap scores usually determined empirically



6

BLOSUM62

Heuristics

• What if limit the # of differences allowed?  E.g. we 
expect the sequences to be very similar.

• Compute 'banded' alignment – stay within # of 
differences (k) from the diagonal.

• Optimal alignment cannot stray too far from diagonal

• What if we do not know k?  Do binary search to find it

k

k
O(km) running

time and space



7

Exclusion methods

• Assume P must match T with at most k errors.  Find 
places in T where P cannot match.

• Split P into floor(n/k+1)-sized chunks.

• If P matches T with less than k errors => at least one 
chunk matches with no errors

• Use any exact matching algorithm to find places 
where a chunk matches T, then run dynamic 
programming in that vicinity.  

• Running time, on average O(m)

Exclusion methods

Exact match

Putative alignment

Text

Pattern



8

"Famous" approaches

• FASTA (Pearson et al.)

– Take all k-mers (substrings of length k) from Pattern and 

identify whether and where they match in the Text

– Assume the k-mer starting at pos'n i in Pattern matches at 
position j in Text, remember (j – i) – the diagonal on which 

the match occured

– Identify "heavy" diagonals – diagonals where many k-mers

match, then refine the diagonals with Smith Waterman

– Also look for off-diagonal matches to account for gaps

"Famous" approaches

• BLAST (Altschul et al.)

– Find short k-mer matches

– Also search for possible inexact matches, e.g. all k-mers

within 1 difference from current one.

– Extend exact matches with Smith-Waterman algorithm

– Assign probabilistic scores to matches: what is the 

probability of finding a match with the same S-W alignment 

score just by chance (e.g. matching a random string)?


