
Project 2 suggestions

The following is a list of possible projects. If you decide to pick one I can give you the

necessary details and point you to the relevant information that will allow you to

complete the project. The broad rules (which will be presented in more detail on

Monday) are:

• You can come up with a project other than those described below

• You can work in teams, though you’ll have to convince me that the scope of the

project is broad enough.

• Each of you doesn’t have to pick a different project (e.g. it’s OK if all of you

decide to pick the same project)

• The project submission will include a 2-page write-up of the project, in addition

to the usual README and code. Please allow sufficient time for working on the

write-up as well.

• PICK A PROJECT YOU CAN COMPLETE IN THE TIME ALLOTTED!

• START WORKING ON THE PROJECT EARLY!

1. Shotgun sequence overlapper. Write a program that performs the pairwise

comparisons between the set of sequences provided as input to a shotgun

sequence assembler and report which sequences overlap. This project will require

you to use a combination of exact matching (e.g. k-mer hashing) and inexact

matching (Smith-Waterman) techniques.

2. Aligner for 454 data. Sequencing data produced by 454 Life Sciences contains

frequent errors in homopolymer regions—sections of DNA where a single

nucleotide is repeated (e.g. AAAA). This project involves modifying the Smith-

Waterman aligner produced during the first project to allow for errors in such

regions (i.e. gaps adjacent to a homopolymer are penalized less).

3. SNP finder. Given a multiple alignment produced by a genome assembler,

identify columns in the alignment where there are high-quality discrepancies

between overlapping reads and report these positions. This project will require

you to learn how to interpret the output of a genome assembler, find a way to

represent a multiple alignment and parse it, column by column to identify

locations with discrepancies.

4. TILLING (method for finding “interesting” mutations). Given a set of DNA

sequences derived from a gene, map them back to the gene sequence (using the

Smith-Waterman algorithm implemented in project 1 or some other alignment

program), identify the reading frame and categorize any mutation between the

original and the mutated gene into one of: premature stop, aa change, frame-shift,

silent to a rare codon.

5. Protein secondary structure prediction. Write a program that takes a protein

sequence and attempts to predict the secondary structure elements in this protein.

This project will require you to use a set of proteins with known secondary

structures to compute structure propensities for amino-acids, then use this

information to predict the structure of other proteins.

6. RNA folding. Write a program that computes the secondary structure of an RNA

molecule and output this structure in a standard structure format. The RNA

folding is a relatively straight-forward dynamic programming algorithm.

7. Phylogenetic tree construction using neighbor-joining. Starting with a

distance matrix between a set of sequences, compute and display the phylogenetic

tree for these sequences using the neighbor-joining algorithm.

8. Transcription terminator finder. Write a program that takes as input a set of

DNA fragments representing the regions downstream from a set of genes and

identifies potential transcription terminators. The terminators are characterized by

a hairpin loop (which can be identified with a simple dynamic programming

algorithm similar to that for RNA folding) flanked by regions with large

concentrations of As upstream and Ts downstream from the hairpin.

9. Simple multiple aligner. Implement a simple multiple alignment program,

extending the Smith-Waterman algorithm implemented in project 1 to allow

implementing the progressive alignment approach.

10. Simple gene finder. Implement a simple gene finder for bacteria, specifically

find stop codons, identify in-frame starts, then evaluate the ORFs, based on codon

preferences in the organism being analyzed.

11. Microarray clustering tool. Develop a tool for clustering the expression data

from a microarray experiment in order to identify correlations between genes and

phenotype. This project will require you to parse publicly available microarray

data and to implement a simple hierarchical clustering tool (e.g. UPGMA).

12. Operon prediction. Search the set of genes in publicly available genomes and

count how often pairs of genes occur nearby each other and in the same

orientation as well as how often they occur in opposite orientations. Genes that

are most often found next to each other, in the same orientation, are likely to be

members of operons.

13. Non-redundify a protein database. Take as input a public protein database that

may contain multiple copies of a same protein (e.g. the same protein from

different organisms) and remove duplicates, keeping track of the duplicated

information.

14. Simple annotation pipeline. Run a gene finder on a genome, identify a set of

genes, then compare these against GenBank using blast to determine their

probable function. This project will require you to learn how to use the gene

finder Glimmer, and how to run batch Blast jobs against GenBank.

15. Evaluate protein-protein interaction network. Given a network of interactions

between proteins (e.g. yeast 2-hybrid) compute several characteristics of this

network, e.g. diameter, clustering coefficient, etc. Use these parameters to

compare networks determined through different experimental techniques. This

project will require you to build a graph data-structure then traverse it to compute

several characteristics of the structure.

16. Simulate the shotgun sequencing process. Given the sequence of a genome,

and several parameters (e.g. coverage, library size, average read length), simulate

a shotgun experiment and output the resulting reads in the AMOS format.

17. LIS clustering for MUMmer. Given a set of MUMmer exact alignments,

attempt to cluster them using the LIS clustering algorithm (the two-dimensional

chaining described in class) in order to identify candidates for extension using the

full Smith-Waterman algorithm.

18. Simulate a protein 2D gel. A protein 2D gel separates proteins in two

dimensions according to isoelectric point on one dimension and mass on the

other. Given a genome and all the predicted proteins, generate a picture that

simulates the image you would get from a 2D gel electrophoresis experiment.

19. GUI development. Develop a GUI for one of the tools described above, or for

the code you wrote in project 1.

