
Course: CMSC 424 – Database design Instructor: Mihai Pop Times: TuTh 11:00-12:15 Location: CSIC 1121

Office hours: Wed, 11-12, AVW 3223 and by appointment alternate office: 3120F Biomol. Sci. Bldg.

TA: Sharath Srinivas TA office hours: TBA

Class website: http://www.cbcb.umd.edu/confcour/CMSC424.shtml

Textbook: Database systems concepts. Silberschatz, Korth, Sudarshan McGraw Hill, ISBN 978-0-07-295886-7

Note: Lectures trump book

\$ 200 000 000 + \$ 13 000 000 / year

\$ 200 000 000 USA 8 Allianz @ ORACLE

Both owned by Larry Ellison, CEO of Oracle It pays to know databases !

Workload

- Exams: 2 midterms, 1 final
- Projects: 1 group programming project build a database that does something cool (TBA)
- Homeworks: ~4 homeworks throughout the semester (some include SQL programming)
- Grading:
 - homeworks 10%
 - midterms 25%
 - final 25%
 - project 40%

Policies

- Attendance follow University policy
 - you must claim excused absences in writing
 - written documentation of illness is required (from Dr. not yourselves)
 - if possible inform me prior to the class you will skip
- Disabilities
 - must inform me during the first 2 weeks of the semester if special accommodations necessary
 - request letter from Office of Disability Support Services
- General communication is key
 - talk to me about any issues whether covered or not by University policies

Academic Honesty

http://www.studenthonorcouncil.umd.edu/code.html

- No cheating on homeworks/projects/exams
- No making up data/results
- No copying of other people's code
- You can work together on homeworks/projects but WRITE THE ANSWER BY YOURSELF

I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Addl. Rules

- NO EXCUSE FOR CHEATING !
- NO LAPTOPS IN CLASS !

Why go through all this?

- Database administrators are paid well
- Databases are everywhere (i.e. lots of job opportunities)
 - E.g. Google
 - at the doctor's office
 - payroll systems
 - on Wall Street
 - government (e.g. CIA)
 - scientific data
- Database research offers many exciting opportunities
 - Internet technologies
 - handling huge amounts of data
 - etc.

Databases in the wild

- Database assembles US warnings of Saddam threat Reuters (1/23/2008)
 - can search by keywords
 - summarizes statistics
 - assembled from a number of sources
 - manual curation/entry
- Google

— ...

- database of searches (google trends)
- database of emails (gmail)
- database of publications (google scholar)
- privacy issues
- Bio-medical databases
 - doctor's office, lab providers, hospitals, research institutes
 - insurance companies
 - who/how/when/how much information shared?

• Much more is produced every day

Wal-mart: 583 terabytes of sales and inventory data
Adds a billion rows every day
"we know how many 2.4 ounces of tubes of toothpastes sold yesterday and what was sold with them"

Yes we can do it; is there any point to it?

[["library of congress --> 20 TBs"]]

• Much more is produced every day

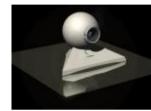
Neilsen Media Research: 20 GB a day; total 80-100 TB From where ???

12000 households or personal meters Extending to iPods and TiVos in recent years

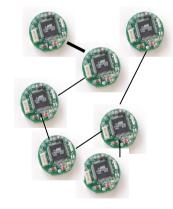
Is there a point beyond telling you what great TV shows you are missing ?

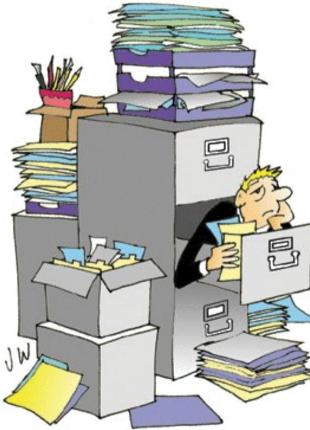
• Scientific data is literally astronomical on scale

Sanger Center – 22 TB doubling every 10 months GenBank – 252 GB Trace Archive – 1.8 billion records (> 2 TB)


New technologies – btwn. 1TB and 100TB / day

Shameless plug: CMSC 423: bioinformatic algorithms, databases and tools. Fall 2008


Sloan Digital Sky Survey – 15 TB


Automatically generated data through instrumentation

- "Britain to log vehicle movements through cameras. 35 million reads per day."
- Wireless sensor networks are becoming ubiquitous.
- RFID: Possible to track every single piece of product throughout its life (Gillette boycott)

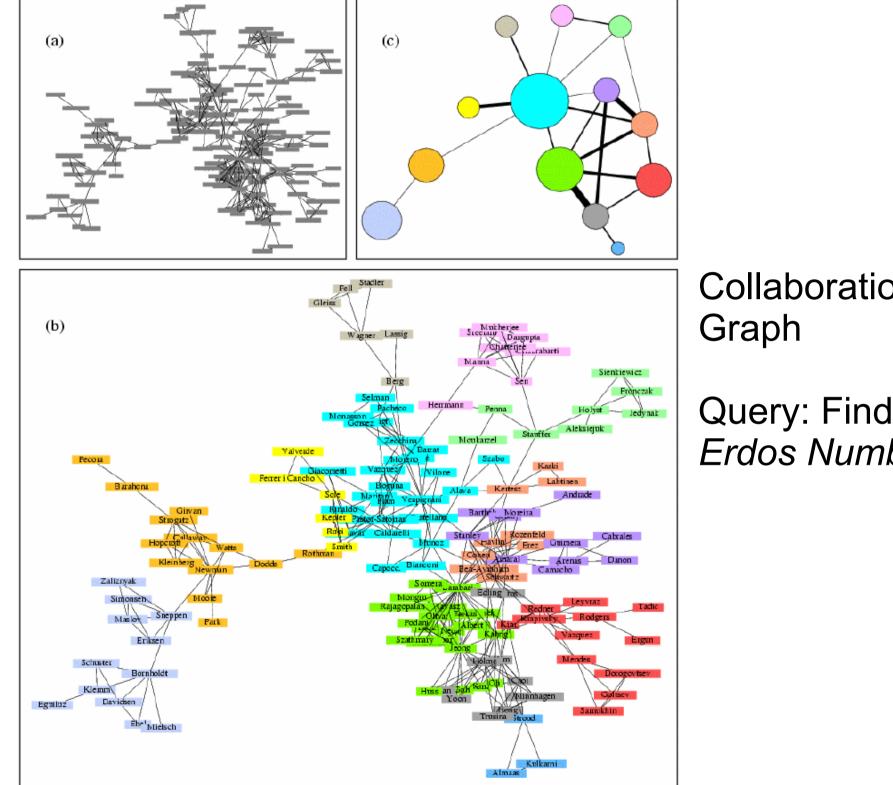
- How do we do *anything* with this data ?
- Where and how do we store it ?
 - Disks are doubling every 18 months or so -not enough
- How do we search through it ?
 - Text search ?
 - "how much time from here to pittsburgh if I start at 2pm ?"
 - Data is there; more will be soon (live traffic data)

- What if the disks crash ?
 - Very common, especially if we are talking about 1000's of disks storing a single system
- Speed !!
 - Imagine a bank and millions of ATMs
 - How much time does it take you to do a withdrawl?
 - The data is not local
 - How do we ensure "correctness" ?
 - Can't have money disappearing
 - Harder than you might think

DBMS to the Rescue

- Provide a systematic way to answer most of these questions...
- Aim is to allow easy management of data
 - Store it
 - Update it
 - Query it
- Massively successful for *structured* data
 - What do I mean by that ?

Structured vs Unstructured

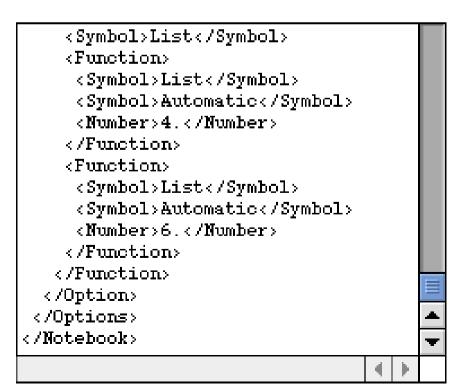

- A lot of the data we encounter is structured
 - Some have very simple structures
 - E.g. Data that can be represented in tabular forms
 - Signficantly easier to deal with
 - We will actually focus on such data for much of the class

Account			
bname	acct_no	balance	
Downtown Mianus Perry R.H	A-101 A-215 A-102 A-305	500 700 400 350	

Customer			
cname	cstreet	ccity	
Jones Smith Hayes Curry Lindsay	Main North Main North Park	Harrison Rye Harrison Rye Pittsfield	

Structured vs Unstructured

- Some data has a little more complicated structure
 - E.g graph structures
 - Map data, social networks data, the web link structure etc
 - In many cases, can convert to tabular forms (for storing)
 - Slightly harder to deal with
 - Queries require dealing with the graph structure



Collaborations

Query: Find my Erdos Number.

Structured vs Unstructured

- Increasing amount of data in a *semi-structured* format
 - XML Self-describing tags
 - Complicates a lot of things
 - We will discuss this toward the end

Structured vs Unstructured

- A huge amount of data is unfortunately unstructured
 - Books, WWW
 - Amenable to pretty much only *text search*
 - Information Retreival deals with this topic
 - What about Google ?
 - Google is actually successful because it uses the structure

DBMS to the Rescue

- Provide a systematic way to answer most of these questions...
 - ... for structured data
 - ... increasing for semi-structured data
 - XML database systems have been coming up
- Solving the same problems for truly unstructured data remains an open problem
 - Much research in Information Retrieval community
 - think YouTube (what does a query for "train" retrieve)

DBMS to the Rescue

- They are everywhere !!
- Enterprises
 - Banks, airlines, universities
- Internet

. . .

- Searchsystems.net lists 35568 public records DBs
- Amazon, Ebay, IMDB
- Blogs, social networks...
- Your computer (emails especially)

Out of scope...

- How do we guarantee the data will be there 10 years from now ?
 - Much harder than you might think
- Privacy and security !!!
 - Every other day we see some database leaked on the web
- New kinds of data
 - Scientific/biological, Image, Audio/Video, Sensor data etc
- Interesting research challenges !

What we will cover...

- representing information
 - data modeling
- languages and systems for querying data
 - complex queries & query semantics
 - over massive data sets
- concurrency control for data manipulation
 - controlling concurrent access
 - ensuring transactional semantics
- reliable data storage
 - maintain data semantics even if you pull the plug

What we will cover...

- We will see...
 - Algorithms and cost analyses
 - System architecture and implementation
 - Resource management and scheduling
 - Computer language design, semantics and optimization
 - Applications of AI topics including logic and planning
 - Statistical modeling of data

What we will cover...

- We will mainly discuss structured data
 - That can be represented in tabular forms (called Relational data)
 - We will spend some time on XML
- Still the biggest and most important business
 - Well defined problem with really good solutions that work
 - Contrast XQuery for XML vs SQL for relational
 - Solid technological foundations
- Many of the basic techniques however are directly applicable
 - E.g. reliable data storage etc
- Many other data management problems you will encounter can be solved by extending these techniques