
CMSC 424 – Database design
Lecture 12

Storage

Mihai Pop

Administrative
• Office hours tomorrow @ 10
• Midterms are in – solutions for part C will be posted later

this week
• Project partners – I have an odd number of people...

Storage Hierarchy

Storage Hierarchy
• Cache - Super fast; volatile

• Main memory - 10s or 100s of ns; volatile

• Flash memory - limited number of write/erase cycles; non-
volatile, slower than main memory
– Intel announcement

• Magnetic Disk - Non-volatile

• Optical Storage - CDs/DVDs; Jukeboxes

• Tape storage - Backups; super-cheap; painful to access

1956
IBM RAMAC
24” platters
100,000 characters each
5 million characters

1979
SEAGATE
5MB

1998
SEAGATE
47GB

2004
Hitachi
400GB
Height (mm): 25.4. Width (mm): 101.6. Depth (mm): 146. Weight (max. g): 700

2006
Western Digital
500GB
Weight (max. g): 600g

2007

Performance Measures of Disks
• Access time – the time it takes from when a read or write request is issued to when data transfer begins.

Consists of:
– Seek time – time it takes to reposition the arm over the correct track.

• Average seek time is 1/2 the worst case seek time.
– Would be 1/3 if all tracks had the same number of sectors, and we ignore the time to start

and stop arm movement
• 4 to 10 milliseconds on typical disks

– Rotational latency – time it takes for the sector to be accessed to appear under the head.
• Average latency is 1/2 of the worst case latency.
• 4 to 11 milliseconds on typical disks (5400 to 15000 r.p.m.)

• Data-transfer rate – the rate at which data can be retrieved from or stored to the disk.
– 25 to 100 MB per second max rate, lower for inner tracks
– Multiple disks may share a controller, so rate that controller can handle is also important

• E.g. ATA-5: 66 MB/sec, SATA: 150 MB/sec, Ultra 320 SCSI: 320 MB/s
• Fiber Channel (FC2Gb): 256 MB/s

Reliability Issues:

 Mean time to failure (MTTF):

57 to 136 years

 Given 1000 new disks with 1,200,000

 hours of MTTF, on average one of them

 will fail in 1200 hours = 50 days.

RAID Levels

• Schemes to provide redundancy at lower cost by using disk striping combined with
parity bits

– Different RAID organizations, or RAID levels, have differing cost, performance
and reliability characteristics

■ RAID Level 1: Mirrored disks with block striping

● Offers best write performance.

● Popular for applications such as storing log files in a database system.

■ RAID Level 0: Block striping; non-redundant.

● Used in high-performance applications where data lose is not critical.

RAID Levels (Cont.)

• RAID Level 2: Memory-Style Error-Correcting-Codes (ECC) with bit striping.
• RAID Level 3: Bit-Interleaved Parity

– a single parity bit is enough for error correction, not just detection, since we know
which disk has failed

• When writing data, corresponding parity bits must also be computed and
written to a parity bit disk

• To recover data in a damaged disk, compute XOR of bits from other disks
(including parity bit disk)

RAID Levels (Cont.)

• RAID Level 3 (Cont.)
– Faster data transfer than with a single disk, but fewer I/Os per second since

every disk has to participate in every I/O.
– Subsumes Level 2 (provides all its benefits, at lower cost).

• RAID Level 4: Block-Interleaved Parity; uses block-level striping, and keeps a parity
block on a separate disk for corresponding blocks from N other disks.

– When writing data block, corresponding block of parity bits must also be
computed and written to parity disk

– To find value of a damaged block, compute XOR of bits from corresponding
blocks (including parity block) from other disks.

RAID Levels (Cont.)

• RAID Level 4 (Cont.)
– Provides higher I/O rates for independent block reads than Level 3

• block read goes to a single disk, so blocks stored on different disks can
be read in parallel

– Provides high transfer rates for reads of multiple blocks than no-striping
– Before writing a block, parity data must be computed

• Can be done by using old parity block, old value of current block and new
value of current block (2 block reads + 2 block writes)

• Or by recomputing the parity value using the new values of blocks
corresponding to the parity block

– More efficient for writing large amounts of data sequentially
– Parity block becomes a bottleneck for independent block writes since every

block write also writes to parity disk

RAID Levels (Cont.)

• RAID Level 5: Block-Interleaved Distributed Parity; partitions data and parity among
all N + 1 disks, rather than storing data in N disks and parity in 1 disk.

– E.g., with 5 disks, parity block for nth set of blocks is stored on disk (n mod 5) + 1,
with the data blocks stored on the other 4 disks.

RAID Levels (Cont.)

• RAID Level 5 (Cont.)
– Higher I/O rates than Level 4.

• Block writes occur in parallel if the blocks
and their parity blocks are on different disks.

– Subsumes Level 4: provides same benefits, but
avoids bottleneck of parity disk.

• RAID Level 6: P+Q Redundancy scheme; similar
to Level 5, but stores extra redundant information
to guard against multiple disk failures.
– Better reliability than Level 5 at a higher cost;

not used as widely.

Optimization of Disk-Block Access
• Block – a contiguous sequence of sectors from a single track

– data is transferred between disk and main memory in blocks
– sizes range from 512 bytes to several kilobytes

• Smaller blocks: more transfers from disk
• Larger blocks: more space wasted due to partially filled blocks
• Typical block sizes today range from 4 to 16 kilobytes

• Disk-arm-scheduling algorithms order pending accesses to tracks so that disk arm
movement is minimized
– elevator algorithm : move disk arm in one direction (from outer to inner tracks or vice

versa), processing next request in that direction, till no more requests in that
direction, then reverse direction and repeat

– sequential access is 1-2 orders of magnitude faster
– random access 10ms/1KB or 10 sec/MB as opposed to 8-10 MB/sec
– so it pays if we combine access (elevator algorithms- piggy banking)

• log-based file system: does not update in-place but logs the writes to a sequential disk
(achieving the sequential speeds)

• clustering of data: organize it to correspond to the access
– if hierarchical access, then put the daughters next to the mothers
– for joining tables, put the joining tuples from the two tables next to each other

Buffer Management

• the buffer pool is the part of the main memory
allocated for temporarily storing disk blocks read from
disk and made available to the CPU- its purpose is
identical to caching for reducing I/O

• the buffer manager: the subsystem responsible for the
allocation and the management of the buffer space-
transparent to the users

• on a process (user) request for a block (page) the
buffer mgr takes the following steps:
– checks if the page is in the buffer pool
– if it is, it passes its address to the process
– if it is not, it brings it from the disk and then passes

its address to the process
• very similar to the virtual memory managers, although it

can do a lot better

Buffer Replacement Strategies

• LRU, FIFO, etc. used in OS do not perform well in
DBMSs- MRU is better for some operations

R: outer
S: inner

for each block b(r) in r do begin
 for each block b(s) in s do begin
 join(b(r),b(s)
 end
 end

● Some times we fasten (or pin) some blocks to keep them
during the operation

● Prevents the replacement strategy to touch them until
released

● These are called fastened or pinned blocks

MRU: A A A A A
 C Total: 8
 D E F
 E F B B B

MRU: A A A A A B B
 C Total: 7
 D E
 E F

LRU: A A A A A D
 C F E Total: 10
 D B B B B B
 E C F

A

D

F

C

E

B

MM Buffer pool

R

S

A

D

C

B
R

S

Disk

Buffer-Replacement Policies (Cont.)
• Pinned block – memory block that is not allowed to be

written back to disk.
• Toss-immediate strategy – frees the space occupied by a

block as soon as the final tuple of that block has been
processed

• Most recently used (MRU) strategy – system must pin the
block currently being processed. After the final tuple of that
block has been processed, the block is unpinned, and it
becomes the most recently used block.

• Buffer manager can use statistical information regarding the
probability that a request will reference a particular relation
– E.g., the data dictionary is frequently accessed. Heuristic:

 keep data-dictionary blocks in main memory buffer

Buffer Management (cont)
• Forced output blocks: occasionally, for recovery reasons, the DBMS

forces some blocks out to disk immediately (does not wait for the OS
I/O scheduler)

• OS affects DBMSs operations by:
– read ahead, write behind
– wrong replacement strategies
– Unix is not good for DBMS to run on top. Most commercial

systems implement their own I/O on a raw disk partition
• Variations of buffer allocation

– common buffer pool for all relations
– separate -”- -”- each relation
– as above but with relations borrowing from each other
– adaptive allocation based on their needs
– prioritized buffers for frequently accessed blocks, e.g. data

dictionary
• for each buffer the manager keeps the following

– which disk and which block it is
– whether it was modified or not (dirty)
– information for the replacement strategy (e.g. the time it was last

accessed)

