
CMSC 424 – Database design
Lecture 13

Storage: Files

Mihai Pop

Recap
• Databases are stored on disk

– cheaper than memory
– non-volatile (survive power loss)
– large capacity

• Operating systems are designed for “general” use – do not
perform optimally when used to manage database storage

• Most DBMSs replace the OS and manage disk storage directly
– Specialized buffer management (MRU policy might be

better than LRU, pinned records, etc.)
– Specialized storage of files (today)

File Organization
• The database is stored as a collection of files. Each file is a

sequence of records. A record is a sequence of fields.
• One approach:

●assume record size is fixed
●each file has records of one particular type only
●different files are used for different relations
This case is easiest to implement; will consider variable
length records later.

Fixed-Length Records
• Simple approach:

– Store record i starting from byte n ∗ (i – 1), where n is the
size of each record.

– Record access is simple but records may cross blocks
• Modification: do not allow records to cross block

boundaries

• Deletion of record i:
alternatives:
– move records i + 1, . . ., n

to i, . . . , n – 1
– move record n to i
– do not move records, but

link all free records on a
free list

Free Lists
• Store the address of the first deleted record in the file

header.
• Use this first record to store the address of the second

deleted record, and so on
• Can think of these stored addresses as pointers since they

“point” to the location of a record.
• More space efficient representation: reuse space for normal

attributes of free records to store pointers. (No pointers
stored in in-use records.)

Variable-Length Records
• Variable-length records arise in database systems in several

ways:
– Storage of multiple record types in a file.
– Record types that allow variable lengths for one or more

fields.
– Record types that allow repeating fields (used in some

older data models).

Variable-Length Records: Slotted Page Structure

• Slotted page header contains:
– number of record entries
– end of free space in the block
– location and size of each record

• Records can be moved around within a page to keep them
contiguous with no empty space between them; entry in the
header must be updated.

• Pointers should not point directly to record — instead they
should point to the entry for the record in header.

Organization of Records in Files
• Heap – a record can be placed anywhere in the file where

there is space
• Sequential – store records in sequential order, based on the

value of the search key of each record
• Hashing – a hash function computed on some attribute of

each record; the result specifies in which block of the file the
record should be placed

• Records of each relation may be stored in a separate file. In a
 multitable clustering file organization records of several
different relations can be stored in the same file
– Motivation: store related records on the same block to

minimize I/O

Sequential File Organization

• Suitable for applications that require
sequential processing of the entire file

• The records in the file are ordered by a
search-key

Sequential File Organization (Cont.)
• Deletion – use pointer chains
• Insertion –locate the position where the record is to be

inserted
– if there is free space insert there
– if no free space, insert the record in an overflow block
– In either case, pointer chain must be updated

• Need to reorganize the file
 from time to time to restore
 sequential order

Multitable Clustering File Organization

Store several relations in one file using a multitable clustering file
organization

Multitable Clustering File Organization (cont.)

Multitable clustering organization of customer and
depositor:

● good for queries involving depositor customer, and for queries involving one
single customer and his accounts

● bad for queries involving only customer
● results in variable size records
● Can add pointer chains to link records of a particular relation

Data Dictionary Storage
• Data dictionary (also called system catalog) stores metadata; that is, data

about data, such as:
• Information about relations

– names of relations
– names and types of attributes of each relation
– names and definitions of views
– integrity constraints

• User and accounting information, including passwords
• Statistical and descriptive data

– number of tuples in each relation
• Physical file organization information

– How relation is stored (sequential/hash/…)
– Physical location of relation

• Information about indices (Chapter 12)

Data Dictionary Storage (Cont.)

• Catalog structure
– Relational representation on disk
– specialized data structures designed for efficient

access, in memory
• A possible catalog representation:

Relation_metadata = (relation_name, number_of_attributes,
 storage_organization, location)
Attribute_metadata = (attribute_name, relation_name, domain_type,

position, length)
User_metadata = (user_name, encrypted_password, group)
Index_metadata = (index_name, relation_name, index_type,

index_attributes)
View_metadata = (view_name, definition)

Indexing...rationale
• Remember the “join” function

– assume tables R1(A1, B), R2(A2, C)

for t1 in R1
 for t2 in R2
 if (t1[A1] == t2[A2])
 output (t1[A1], t1[B], t2[C])
 end
 end
end

running time - #tuples in R1 * # tuples in R2
• Can we do better?

– what if the tables were written in sorted files

Indexing...rationale
• Better algorithm

while not end of R1 or R2
 while (t1[A1] < t2[A2])
 t1 = next
 end
 while (t1[A1] > t2[A2])
 t2 = next
 end
 foreach t1 & t2 st. t1[A1] == t2[A2]
 output (t1[A1], t1[B], t2[C])
 end
 advance t1 and t2 to next difference
end

running time min (# tuples in R1, # tuples in R2) + “size of
largest cluster of equal keys”

Indexing...rationale
• Sorting makes things faster
• What if we have more than one key on which we join?
• Store a separate index for each key

– file of pointers to the records
– order of pointers in the index corresponds to ordering of

key values
• Multiple indices – we can sort the same file in different ways

Basic Concepts
• Indexing mechanisms used to speed up access to desired

data.
– E.g., author catalog in library

• Search Key - attribute to set of attributes used to look up
records in a file.

• An index file consists of records (called index entries) of the
form

• Index files are typically much smaller than the original file
• Two basic kinds of indices:

– Ordered indices: search keys are stored in sorted order
– Hash indices: search keys are distributed uniformly

across “buckets” using a “hash function”.

search-key pointer

Index Evaluation Metrics

• Access types supported efficiently. E.g.,
– records with a specified value in the attribute
– or records with an attribute value falling in a specified

range of values.
• Access time
• Insertion time
• Deletion time
• Space overhead

Ordered Indices
• In an ordered index, index entries are stored sorted on the

search key value. E.g., author catalog in library.
• Primary index: in a sequentially ordered file, the index

whose search key specifies the sequential order of the file.
– Also called clustering index
– The search key of a primary index is usually but not

necessarily the primary key.
• Secondary index: an index whose search key specifies an

order different from the sequential order of the file. Also
called
non-clustering index.

• Index-sequential file: ordered sequential file with a primary
index.

Dense Index Files

• Dense index — Index record appears for every
search-key value in the file.

Sparse Index Files
• Sparse Index: contains index records for only some search-

key values.
– Applicable when records are sequentially ordered on

search-key
• To locate a record with search-key value K we:

– Find index record with largest search-key value < K
– Search file sequentially starting at the record to which the

index record points

Sparse Index Files (Cont.)
• Compared to dense indices:

– Less space and less maintenance overhead for insertions
and deletions.

– Generally slower than dense index for locating records.
• Good tradeoff: sparse index with an index entry for every

block in file, corresponding to least search-key value in the
block.

Multilevel Index
• If primary index does not fit in memory, access becomes expensive.
• Solution: treat primary index kept on disk as a sequential file and

construct a sparse index on it.
– outer index – a sparse index of primary index
– inner index – the primary index file

• If even outer index is too large to fit in main memory, yet another level
of index can be created, and so on.

• Indices at all levels must be updated on insertion or deletion from the
file.

Multilevel Index (Cont.)

Index Update: Deletion
• If deleted record was the only record in the file with its

particular search-key value, the search-key is deleted from the
index also.

• Single-level index deletion:
– Dense indices – deletion of search-key:similar to file record

deletion.
– Sparse indices –

• if an entry for the search key exists in the index, it is
deleted by replacing the entry in the index with the next
search-key value in the file (in search-key order).

• If the next search-key value already has an index entry, the
entry is deleted instead of being replaced.

Index Update: Insertion

• Single-level index insertion:
– Perform a lookup using the search-key value appearing

in the record to be inserted.
– Dense indices – if the search-key value does not

appear in the index, insert it.
– Sparse indices – if index stores an entry for each

block of the file, no change needs to be made to the
index unless a new block is created.

• If a new block is created, the first search-key value appearing
in the new block is inserted into the index.

• Multilevel insertion (as well as deletion) algorithms
are simple extensions of the single-level
algorithms

Secondary Indices

• Frequently, one wants to find all the records
whose values in a certain field (which is not the
search-key of the primary index) satisfy some
condition.
– Example 1: In the account relation stored sequentially

by account number, we may want to find all accounts
in a particular branch

– Example 2: as above, but where we want to find all
accounts with a specified balance or range of
balances

• We can have a secondary index with an index
record for each search-key value

Secondary Indices Example

• Index record points to a bucket that contains pointers to all the actual
records with that particular search-key value.

• Secondary indices have to be dense

Secondary index on balance field of account

Primary and Secondary Indices

• Indices offer substantial benefits when searching
for records.

• BUT: Updating indices imposes overhead on
database modification --when a file is modified,
every index on the file must be updated,

• Sequential scan using primary index is efficient,
but a sequential scan using a secondary index is
expensive
– Each record access may fetch a new block from disk
– Block fetch requires about 5 to 10 milliseconds

• versus about 100 nanoseconds for memory access

Next...
• B+-trees
• Hashing

• Have a good break!

