CMSC 424 — Database design
Lecture 13
Storage: Files

Mihai Pop

Recap

* Databases are stored on disk
— cheaper than memory
—non-volatile (survive power loss)
— large capacity
* Operating systems are designed for “general” use — do not
perform optimally when used to manage database storage
* Most DBMSs replace the OS and manage disk storage directly

— Specialized buffer management (MRU policy might be
better than LRU, pinned records, etc.)

— Specialized storage of files (today)

File Organization

* The database is stored as a collection of files. Each file is a
sequence of records. A record is a sequence of fields.

* One approach:
eassume record size is fixed
*each file has records of one particular type only
«different files are used for different relations

This case is easiest to implement; will consider variable
length records later.

Fixed-Length Records

* Simple approach:

— Store record i starting from byte n [/(i — 1), where n is the
size of each record.

— Record access is simple but records may cross blocks
 Modification: do not allow records to cross block

boundaries
record 0 | A-102 | Perryridge | 400
record 1 A-305 | Round Hill | 350
* Deletion of record i: record2 | A-215 | Mianus 700
alternatives: record 3 A-101 | Downtown | 500

— move I'ECOI'dS Z +1 n record 4 A-222 [Redwood 700
SR record 5 | A-201 | Perryridge | 900

toz, ..., n-1 record 6 | A-217 | Brighton | 750
—move record n toi record7 | A-110 | Downtown | 600
— do not move records. but record 8 | A-218 | Perryridge | 700

7

link all free records on a
free list

Free Lists

Store the address of the first deleted record in the file
header.

Use this first record to store the address of the second
deleted record, and so on

Can think of these stored addresses as pointers since they
“point” to the location of a record.

More space efficient representation: reuse space for normal
attributes of free records to store pointers. (No pointers
stored in in-use records.)

header -
record 0 | A-102 | Perryridge | 400)

record 1 -
record 2 | A-215 | Mianus 700)
record 3 | A-101 | Downtown | 500

record 4 a
record 5 | A-201 | Perryridge | 900)
record 6 _

record 7 A-110 | Downtown | 600
record 8 | A-218 | Perryridge | 700

Variable-Length Records

* Variable-length records arise in database systems in several
ways:
— Storage of multiple record types in a file.

— Record types that allow variable lengths for one or more
fields.

— Record types that allow repeating fields (used in some
older data models).

Variable-Length Records: Slotted Page Structure

Block Header Records

Size # Entries

End of Free Space

* Slotted page header contains:
— number of record entries
—end of free space in the block
— location and size of each record

* Records can be moved around within a page to keep them
contiguous with no empty space between them; entry in the
header must be updated.

* Pointers should not point directly to record — instead they
should point to the entry for the record in header.

Organization of Records in Files

Heap — a record can be placed anywhere in the file where
there is space

Sequential — store records in sequential order, based on the
value of the search key of each record

Hashing — a hash function computed on some attribute of
each record; the result specifies in which block of the file the
record should be placed

Records of each relation may be stored in a separate file. In a
multitable clustering file organization records of several
different relations can be stored in the same file

— Motivation: store related records on the same block to
minimize I/O

Sequential File Organization

» Suitable for applications that require
sequential processing of the entire file

* The records in the file are ordered by a

search-key

Brighton

A-101 | Downtown | 500
A-110 | Downtown | 600
A-215 | Mianus 700
A-102 | Perryridge | 400
A-201 | Perryridge | 900
A-218 | Perryridge | 700
A-222 | Redwood 700
A-305 | Round Hill | 350

J\J\J\}\N\N\J

Sequential File Organization (Cont.)

* Deletion — use pointer chains

* Insertion —locate the position where the record is to be
inserted

— if there is free space insert there
—if no free space, insert the record in an overflow block
— In either case, pointer chain must be updated

. . A-217 | Brighton 750 —
* Need to reorganize the file e

from time to time to restore A-110 | Downtown 1600 |
sequential order A-215 | Mianus | 700 | -
A-102 | Perryridge | 400 -
A-201 | Perryridge | 900 -
A-218 | Perryridge | 700 _
A-222 | Redwood 700 _
A-305 | Round Hill | 350

INNVNNF NN

A-888 North Town | 800

Multitable Clustering File Organization

Store several relations in one file using a multitable clustering file

organization

customer_nanie

customer_name | account_number
Hayes A-102
Hayes A-220
Hayes A-503
Turner A-305

customer _street

customer_city

Hayes

Main

Brooklyn

Turner

Putnam

Stamford

Multitable Clustering File Organization (cont.)

Multitable clustering organization of customer and
depositor:

Hayes | Main Brooklyn
Hayes | A-102
Hayes | A-220
Hayes | A-503
Turner | Putnam | Stamford
Turner | A-305

good for queries involving depositor P<[customer, and for queries involving one
single customer and his accounts

bad for queries involving only customer
results in variable size records
Can add pointer chains to link records of a particular relation

Data Dictionary Storage

Data dictionary (also called system catalog) stores metadata; that is, data
about data, such as:

Information about relations
— names of relations
— names and types of attributes of each relation
— names and definitions of views
— Integrity constraints
User and accounting information, including passwords
Statistical and descriptive data
— number of tuples in each relation
Physical file organization information
— How relation is stored (sequential/hash/...)
— Physical location of relation

Information about indices (Chapter 12)

Data Dictionary Storage (Cont.)

Catalog structure
— Relational representation on disk

— specialized data structures designed for efficient
access, in memory

* A possible catalog representation:

Relation_metadata = (relation _name, number_of attributes,
storage_organization, location)

Attribute _metadata =_(attribute _name, relation_name, domain_type,
position, length)

User _metadata = (user_name, encrypted_password, group)

Index_metadata = (index_name, relation_name, index_type,
index__attributes)

View_metadata = (view_name, definition)

Indexing...rationale

* Remember the “join” function
— assume tables R1(Al, B), R2(A2, C)

for t1 in R1
for t2 in R2
if (t1[A1] == t2[A2])
output (t1[A1], t1[B], t2[C])
end
end
end

running time - #tuples in R1 * # tuples in R2
 Can we do better?
— what if the tables were written in sorted files

Indexing...rationale
* Better algorithm

while not end of R1 or R2
while (t1[A1] < t2[A2])
t1l = next
end
while (t1[A1] > t2[A2])
t2 = next
end
foreach t1 & t2 st. t1[Al] == t2[A2]
output (t1[A1], t1[B], t2[C])
end
advance t1 and t2 to next difference
end

running time min (# tuples in R1, # tuples in R2) + “size ot
largest cluster of equal keys”

Indexing...rationale

Sorting makes things faster
What if we have more than one key on which we join?
Store a separate index for each key

— file of pointers to the records

— order of pointers in the index corresponds to ordering of
key values

Multiple indices — we can sort the same file in different ways

Basic Concepts
éndexing mechanisms used to speed up access to desired
ata.
— E.g., author catalog in library

Search Key - attribute to set of attributes used to look up
records in a file.

fm index file consists of records (called index entries) of the
orm

search-key pointer

Index files are typically much smaller than the original file
Two basic kinds of indices:
— Ordered indices: search keys are stored in sorted order

— Hash indices: search keys are distributed uniformly
across “buckets” using a “hash function”.

Index Evaluation Metrics

Access types supported efficiently. E.g.,
— records with a specified value in the attribute

— or records with an attribute value falling in a specified
range of values.

Access time
Insertion time
Deletion time
Space overhead

Ordered Indices

In an ordered index, index entries are stored sorted on the
search key value. E.g., author catalog in library.

Primary index: in a sequentially ordered file, the index
whose search key specifies the sequential order of the file.

— Also called clustering index

— The search key of a primary index is usually but not
necessarily the primary key.

Secondary index: an index whose search key specifies an
orﬁeé different from the sequential order of the file. Also
calle

non-clustering index.

Ingex-sequential file: ordered sequential file with a primary
index.

Dense Index Files

* Dense index — Index record appears for every
search-key value in the file.

Brighton > A-217 | Brighton 750 -P
Downtown » A-101 | Downtown 500 -—P
Mianus — A-110 | Downtown 600 ~
Perryridge ——\ A-215 | Mianus 700 _P
= e Perryridge | 400 12
Round Hill | - A-201 | Perryridge 900 _P
A-218 | Perryridge 700 _P
A-222 | Redwood 700 _P
A-305 | Round Hill 350 _P

Sparse Index Files
* Sparse Index: contains index records for only some search-
key values.

— Applicable when records are sequentially ordered on
search-key

* To locate a record with search-key value K we:
— Find index record with largest search-key value < K

— Search file sequentially starting at the record to which the
index record points

Brighton > A-217 | Brighton 750 3
Mianus s A-101 | Downtown 500 S
Redwood \ \ A-110 | Downtown 600 —

A-215 | Mianus 700 |

A-102 | Perryridge 400 -
A-201 | Perryridge 900 .
A-218 | Perryridge 700 -
A-222 | Redwood 700 .
A-305 | Round Hill 350 .

\WAVAVAVLVAVAVAY,

Sparse Index Files (Cont.)

* Compared to dense indices:

— Less space and less maintenance overhead for insertions
and deletions.

— Generally slower than dense index for locating records.

* Good tradeoff: sparse index with an index entry for every
block in file, corresponding to least search-key value in the

block.

data
block 0

\

data
block 1

Multilevel Index

If primary index does not fit in memory, access becomes expensive.

Solution: treat primary index kept on disk as a sequential file and
construct a sparse index on it.

— outer index — a sparse index of primary index
— inner index — the primary index file

If even outer index is too large to fit in main memory, yet another level
of index can be created, and so on.

Indices at all levels must be updated on insertion or deletion from the
file.

Multilevel Index (Cont.)

index j data
block 0 block 0

index data
block 1 block 1

outer index

inner index

Index Update: Deletion

* If deleted record was the only record in the file with its
particular search-key value, the search-key is deleted from the

index also.
* Single-level index deletion:

— Dense indices — deletion of search-key:similar to file record

deletion.
— Sparse indices —

* if an entry for the search key exists in the index, it is
deleted by replacing the entry in the index with the next
search-key value in the file (in search-key order).

* If the next search-key value already has an index entry, t
entry is deleted instead of being replaced.
> A-217

Brighton
Mianus S|
Redwood N

/

Brighton

750

ne

A-101

Downtown

500

A-110

Downtown

600

A-215

Mianus

700

A-102

Perryridge

400

A-201

Perryridge

900

A-218

Perryridge

700

A-222

Redwood

700

A-305

Round Hill

350

J\J\}\J\]\}\J\}\}

Index Update: Insertion

* Single-level index insertion:

— Perform a lookup using the search-key value appearing
In the record to be inserted.

— Dense indices — if the search-key value does not
appear in the index, insert it.

— Sparse indices — if index stores an entry for each
block of the file, no change needs to be made to the
Index unless a new block is created.

* If a new block is created, the first search-key value appearing
in the new block is inserted into the index.

* Multilevel insertion (as well as deletion) algorithms
are simple extensions of the single-level
algorithms

Secondary Indices

* Frequently, one wants to find all the records
whose values in a certain field (which is not the
search-key of the primary index) satisfy some
condition.

— Example 1: In the account relation stored sequentially
by account number, we may want to find all accounts
In a particular branch

— Example 2: as above, but where we want to find all
accounts with a specified balance or range of
balances

* We can have a secondary index with an index
record for each search-key value

Secondary Indices Example

A-217 | Brighton 750 1 Ao

350 —f _] A-101 | Downtown | 500 -~
| A-110 | Downtown | 600 -
400 -—/—>
|
-

500 - A-215 | Mianus 700 .
600| H A-102 | Perryridge 400 -

700 = /—> A-201 | Perryridge 900 -
7501 - > A-218 | Perryridge |700| -
900| - AVANEN

_/ \, A222 | Redwood | 700|
_/ A-305 | Round Hill | 350 | _

MLVAVAVAVAVAVAVAV,

Secondary index on balance field of account

* Index record points to a bucket that contains pointers to all the actual
records with that particular search-key value.

* Secondary indices have to be dense

Primary and Secondary Indices

* Indices offer substantial benefits when searching
for records.

* BUT: Updating indices imposes overhead on
database modification --when a file is modified,
every index on the file must be updated,

* Sequential scan using primary index is efficient,
but a sequential scan using a secondary index is

expensive
— Each record access may fetch a new block from disk

— Block fetch requires about 5 to 10 milliseconds
* versus about 100 nanoseconds for memory access

Next...

* B+-trees
* Hashing

* Have a good break!

