CMSC 424 — Database design
Lecture 14
B+-trees
Hashing

Mihai Pop

Administrative

* Project questions?
* HW2 answers
* HW3 postponed till after midterm?2

Indexing...recap

Index — helps find/process records fast (surrogate for sorting
the file)

Dense/sparse index

Multi-level indexing (inner/outer index)
Clustering/non-clustering index
Primary/secondary index

Key elements:
— speed of access
— space overhead
— speed/ease of insertion/deletion
— access type (find exact, find range, etc.)

Many insertion/deletions may lead to inefficient structure —
indices may need to be rebuilt to improve performance

B+-trees

A variant of multi-level indexing

Extension of binary search tree concept

Optimize I/O etficiency — node size = disk block size
Balanced tree structure — all leaves are equidistant from root

Example B+ Tree

« Search begins at root, and key comparisons direct it to a leaf.
« Search for 5%, 15%, all data entries >= 24~ ...

VN

Root \
N\

13

17

24

30

£

£\

VN

2*

3*

5*

7*

14*

16*

19*

20"

22*

24*

27*

29*

33*

34*

38*

39*

[1 Based on the search for 15*, we know it is not in the tree!

B+ Tree - Properties

Balanced
Every node except root must be at least 72 full.

Order. the minimum number of keys/pointers in a non-
leaf node

Fanout of a node: the number of pointers out of the
node

B+ Trees in Practice

» Typical order: 100. Typical fill-factor: 67%.
— average fanout = 133

» Typical capacities:
— Height 3: 1333 = 2,352,637 entries
— Height 4: 1334 = 312,900,700 entries

« Can often hold top levels in buffer pool:
— Level 1 = 1 page = 8 Kbytes
— Level2= 133 pages = 1 Mbyte
— Level 3 = 17,689 pages = 133 MBytes

B+ Trees: Summary

« Searching:
— log,(n) — Where d is the order, and n is the number of entries

* Insertion:
— Find the leaf to insert into
— If full, split the node, and adjust index accordingly
— Similar cost as searching

 Deletion
— Find the leaf node

— Delete
— May not remain half-full; must adjust the index accordingly

Insert 23*

Root \
Y

13 17 24 30
£ VRN V £ VRN
2* | 3* | 5* | 7* 14* | 16* 19* | 20* | 22* 24* | 27* | 29* 33* | 34* | 38* | 39*
No splitting required.
Root \
N\
13 17 24 30
VRN £ v VRN VRN
2* | 3* | 5% | 7* 14* | 16* 19*| 20* | 22* | 23* 24* | 27* [29* 33* | 34* | 38* | 39*

Root \
Y

Insert 8*

13 17 24 30
2* 3* 5 | 7* 14* | 16* 19* [20* | 22* 24* | 27* | 29* 33* | 34* | 38* | 39*
Root*
17
5 13 24 30
4 N h % N
2* | 3* 5| 7* | 8* 14* | 16* 19* 20* [22* 24* | 27* |29* 33*|34*(38*|39*

Example B+ Tree - Inserting 8*

Root*

17

/'

5

N\

X

‘ \

24

30

y,

£ X

£ X

2% | 3*

5

13

/;q N
*

7

8*

x&
14* [16*

19*

20*

22*

24*

27*

29*

33*

34*

38*

39*

[1Notice that root was split, leading to increase in height.

[In this example, we can avoid split by re-distributing

entries; however, this is usually not done in practice.

C

(from previous example of inserting “8”)

Observe how
minimum occupancy
IS guaranteed in both
leaf and index pg
splits.

Note difference
between copy-up
and push-up; be sure
you understand the
reasons for this.

ata vs. Index Page Split

Data Page
Split

£

2* | 3

5*

7*

8*

Index
Page Split

17

2*

3*

5*

7*

8*

13

17

24

30

24

Delete 19*

Root*

17

/'

\

5 13 24 30
4 \ N 4 ~
/ VY \ x& VY / £ VR
2% | 3* 5 | 77 | 8* 14* | 16* 19%| 20*| 22* 24* [27* |29* 33*[34*|38*|39*
Root*
17
5 13 24 30
[N\ h y N
2% | 3* 5 | 7* | 8% 14* |16* 20*(22* 24~ [27* | 29* 33*|34*(38* | 39*

Delete 20* ...

Root*

17

/'

\

5 13 24 30
y N h 4 \
2* | 3* 57| 8 14* |16* 20* 22* 24* (27*|29* 33*[34*|38*|39*
Root*
17
5 13 27 30
d N h 2 <
2* | 3* 5| 7% | 8 14* |16* 22* 24* 27* |1 29* 33*| 34*(38*|39*

Delete 19* and 20~ ...

* Deleting 19” is easy.

« Deleting 20* is done with re-distribution. Notice how middle
key is copied up.

* Further deleting 24* results in more drastic changes

Delete 24~ ...

Root*

17

/'

\

5 13 27 30
4 N h 2 N
/ AN \ x& VY / £ VN
2 | 3* 5¢ | 7* | 8* 14* |16* 22%| 24* 27* | 29* 33*| 34*(38*|39*
Root\ No redistribution from
N\ . .
- neighbors possible
5 13 27 30
4 N h L ~
2* | 3* 5| 7* | 8* 14* | 16* 22* 27* | 29* 33*[34*|38*|39*

Deleting 24*

\

 Must merge.
« Observe foss’ of index entry (on 30

right), and "pull down’ of index ‘

entry (below).

22% | 27* | 29* 33* | 34 |38* |39*
Rok
s 13 || 17 30

2* | 3* 5 | 7* | 8* 14* | 16* 22* | 27* | 29* 33* [34 | 38* |39*

Example of Non-leaf Re-distribution

* Tree is shown below during deletion of 24*. (What
could be a possible initial tree?)

* |n contrast to previous example, can re-distribute entry
from left child of root to right child.

¥ ™

Roo\
A

22

\ N

*

14*|16* 17*)18* 20| 21* 22*| 27% 29* 33*[34*|38*

39*

After Re-distribution

* Intuitively, entries are re-distributed by "pushing through’ the
splitting entry in the parent node.

« |t suffices to re-distribute index entry with key 20; we've re-
distributed 17 as well for illustration.

* 34*

38*

39*

