
CMSC 424 – Database design
Lecture 14
B+-trees
Hashing

Mihai Pop

Administrative
• Project questions?
• HW2 answers
• HW3 postponed till after midterm2

Indexing...recap
• Index – helps find/process records fast (surrogate for sorting

the file)
• Dense/sparse index
• Multi-level indexing (inner/outer index)
• Clustering/non-clustering index
• Primary/secondary index

• Key elements:
– speed of access
– space overhead
– speed/ease of insertion/deletion
– access type (find exact, find range, etc.)

• Many insertion/deletions may lead to inefficient structure –
indices may need to be rebuilt to improve performance

B+-trees
• A variant of multi-level indexing
• Extension of binary search tree concept
• Optimize I/O efficiency – node size = disk block size
• Balanced tree structure – all leaves are equidistant from root

Example B+ Tree

• Search begins at root, and key comparisons direct it to a leaf.
• Search for 5*, 15*, all data entries >= 24* ...

☛ Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

B+ Tree - Properties

• Balanced
• Every node except root must be at least ½ full.
• Order: the minimum number of keys/pointers in a non-

leaf node
• Fanout of a node: the number of pointers out of the

node

B+ Trees in Practice

• Typical order: 100. Typical fill-factor: 67%.
– average fanout = 133

• Typical capacities:
– Height 3: 1333 = 2,352,637 entries
– Height 4: 1334 = 312,900,700 entries

• Can often hold top levels in buffer pool:
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 MBytes

B+ Trees: Summary

• Searching:
– logd(n) – Where d is the order, and n is the number of entries

• Insertion:
– Find the leaf to insert into
– If full, split the node, and adjust index accordingly
– Similar cost as searching

• Deletion
– Find the leaf node
– Delete
– May not remain half-full; must adjust the index accordingly

Insert 23*
Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

23*

No splitting required.

Insert 8*
Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Example B+ Tree - Inserting 8*

❖ Notice that root was split, leading to increase in height.

❖ In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Data vs. Index Page Split
(from previous example of inserting “8”)

• Observe how
minimum occupancy
is guaranteed in both
leaf and index pg
splits.

• Note difference
between copy-up
and push-up; be sure
you understand the
reasons for this.

2* 3* 5* 7*

5
Entry to be inserted in parent node.
(Note that 5 is
continues to appear in the leaf.)

s copied up and

2* 3* 5* 7* 8* …
Data Page
Split

8*

5 24 3013

appears once in the index. Contrast17
Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split.)

17 24 3013Index
Page Split

5

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Delete 19*

2* 3*

Root

17

24 30

14* 16* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Delete 20* ...

2* 3*

Root

17

24 30

14* 16* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

2* 3*

Root

17

27 30

14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Delete 19* and 20* ...

• Deleting 19* is easy.
• Deleting 20* is done with re-distribution. Notice how middle

key is copied up.
• Further deleting 24* results in more drastic changes

Delete 24* ...

2* 3*

Root

17

27 30

14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

2* 3*

Root

17

27 30

14* 16* 22* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

No redistribution from
neighbors possible

Deleting 24*

• Must merge.
• Observe `toss’ of index entry (on

right), and `pull down’ of index
entry (below).

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17

Example of Non-leaf Re-distribution

• Tree is shown below during deletion of 24*. (What
could be a possible initial tree?)

• In contrast to previous example, can re-distribute entry
from left child of root to right child.

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*

After Re-distribution

• Intuitively, entries are re-distributed by `pushing through’ the
splitting entry in the parent node.

• It suffices to re-distribute index entry with key 20; we’ve re-
distributed 17 as well for illustration.

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22

