
CMSC 424 – Database design
Lecture 15
Hashing

Query processing

Mihai Pop

Admin issues
• Sample midterm on website later today
• No office hours on Wednesday – email me if you need help

preparing for midterm.
• Project questions?

Add'l. notes
• B+-trees can be used as an index structure (as described

before)
• B+-trees can also be used to organize the file

– leaves and internal nodes contain entire records
– fan-out is limited (due to large size of records)

• Even B+-tree structures may need to be rebuilt to enhance
performance (e.g. due to insertions/deletions order of blocks
on disk becomes inefficient)

• Secondary indices may need to be updated every time we
modify a B+-tree file (order of records may change even
though records did not change)
– solution: secondary indices point to the primary search

key instead of the record – slower access but no need for
frequent updates

More…

• Hash-based Indexes
– Static Hashing
– Dynamic Hashing

• Read on your own.
– Linear Hashing

• Grid-files
• R-Trees
• etc…

Unordered Indexes: Static Hashing
• A bucket is a unit of storage containing one or more records (a bucket

is typically a disk block or several disk blocks)

• In a hash file organization we obtain the bucket of a record directly
from its search-key value using a hash function

• Hash function h is a function from the set of all search-key values K to
the set of all bucket addresses B

• Hash function is used to locate records for access, insertion as well as
deletion

• Records with different search-key values may be mapped to the same
bucket; thus entire bucket has to be searched sequentially to locate a
record.

Hashed File
• divide the set of blocks into buckets
• devise a hashing function that maps each key value into a bucket

V: set of key values
B: number of buckets
H: hashing function H: V-> {0,1,2,…,B-1}

Example: V: 9 digit SS#, B: 1000, H: key MOD 1000
• search for, insert, delete, modify a key k do

– H(k) to get the bucket number
– search sequentially in the bucket (heap organization within each

bucket)
• selection of H: almost any function that generates “random” numbers

in [0,B-1]
– try to distribute evenly the keys into the B buckets
– H(key)=3 (constant function) is bad- all records go to the 3rd

bucket
– rule of thumb for MOD: prime number

• collisions: two or more key values go to the same bucket
– too many collisions increases the search time degrades performance
– no collisions means that each bucket has only (one or a few) key(s)

Hash Functions
• Worst has function maps all search-key values to the same bucket; this

makes access time proportional to the number of search-key values in
the file

• An ideal hash function is uniform, i.e., each bucket is assigned the
same number of search-key values from the set of all possible values

• Ideal hash function is random, so each bucket will have the same
number of records assigned to it irrespective of the actual distribution
of search-key values in the file

• Typical hash functions perform computation on the internal binary
representation of the search-key.
– For example, for a string search-key, the binary representations of

all the characters in the string could be added and the sum modulo
the number of buckets could be returned. .

– From book: hash function for strings:
s[0]⋅31n−1s[1]⋅31n−2s[n−1]

Hashed File
• hash table: holds the physical address of the buckets
Example:

EMP(ename,sal) H(sal): sal MOD 3
● overflow may occur for the following reasons:

– too many records
– poor hashing function
– skewed data (too many values hash to the same bucket)

• overflow is handled by one of the two methods:
– chaining of multiple blocks in a bucket
– open addressing: if the hashed bucket H(k) is full, put it in H(k)+1. If

also full, in H(k)+2, etc. NOT USEFUL FOR DATABASES
– double hashing: hash once to H(k). If full, hash again with another

H’(k). If still full, then apply any of the above methods

• performance depends on the loading factor=# of records/(B*f) where f is
the number of keys in a block
– rule of thumb: when loading factor too high, double B and rehash

Gary 30
Jill 36

 -

 -

 -

Shirley 31
Maria 25
Pat 40

Ron 45
Howard 61

Dan 29

0

1

2

Hash Table
(bucket directory)

Search Cost of a Hashed File
• assume the hash table is in main memory

– successful search: best case 1 block, worst all chained bucket
blocks, average half of worst

– unsuccessful search: best, worst, average all chained bucket blocks
– for loading factor of about 90% and a good hashing function

average is 1.2 blocks

• Advantage of hashing: very fast for exact queries

• Disadvantage of hashing : since the records are not sorted in any
order, it cannot do range queries

Hash Indices
• Hashing can be used not only for file organization, but also for index-

structure creation

• A hash index organizes the search keys, with their associated record
pointers, into a hash file structure

• Strictly speaking, hash indices are always secondary indices
– if the file itself is organized using hashing, a separate primary hash

index on it using the same search-key is unnecessary
– However, we use the term hash index to refer to both secondary

index structures and hash organized files.

Example of Hash Index

Deficiencies of Static Hashing
• In static hashing, function h maps search-key values to a fixed set of B

of bucket addresses

• Databases grow over time. If initial number of buckets is too small,
performance will degrade due to too much overflows

• If file size at some point in the distance future is anticipated and
number of buckets allocated accordingly, significant amount of space
will be wasted initially

• If database shrinks, again space will be wasted

• One option is periodic re-organization of the file with a new hash
function, but it is
– very expensive and
– impossible in 7-24 databases

Index Definition in SQL
• Create an index

create index <index-name> on <relation-name>
<attribute-list>)

E.g.: create index b-index on branch(branch-name)

• Use create unique index to indirectly specify and enforce the condition
that the search key is a candidate key.
– Not really required if SQL unique integrity constraint is supported

• To drop an index
drop index <index-name>

13. Query Processing
• Steps

1.parsing & translation: SQL ==> Internal relational form
2.optimization: pick amongst several the best plan
3.evaluation of the selected plan

SQL is not “query friendly”
• SQL command tells you WHAT to do not HOW to do it
• select balance

from account
where balance < 2500

• can be written as either:
–
–

• Picking among these depends on many factors (e.g. is there
an index on balance?, what type of index is used?...)

• A query-evaluation plan also records additional information:

balance2500balanceaccount
balancebalance2500account 

balancebalance2500 ;using index 1account

Query Processing
 Cost parameters (some are easy to maintain some are very hard)
– statistical info maintained in the system’s catalog

n(r) = number of tuples in the relation r
b(r) = number of blocks containing tuples of relation r
s(r) = average size of a tuple of relation r
f(r) = blocking factor of r, I.e. the number of r tuples that fit in a

block

V(A,r) = number of distinct values of attribute A in r
 = n(r) if A is a key

SC(A,r) = average selectivity of attribute A in r (# of tuples selected
per value of A)

 = 1 if A is a key
 = n(r) / V(A,r) otherwise

Query processing
min(A,r) = minimum value of attribute A in r
max(A,r) = maximum value of attribute A in r

• Two important computations
– I/O cost of each operation

• Number of blocks accessed
• Number of seeks

– the size of the result

Selection / Projection File Scan
• A1: search for equality: R.A=c cost (seq. search rel. sorted)

 = b(r)/2 +  SC(A,r)/f(r)  - 1 average successful
 = b(r)/2 average unsuccessful

● A2: (binary search)

 =  log b(r)  +  SC(A,r)/f(r)  - 1 average successful
• Size of the result: n(σ(R.A=c))= SC(A,r)= n(r) / V(A,r)
• search for inequality: R.A>c

– cost (file unsorted) = b(r)
 (sorted on A) = b(r)/2+ b(r)/2 (if we assume that half of the

tuples qualify)

– size of the result: n(σ(R.A>c))= [max(A,r)-c] * n(r) / [max(A,r) -
min(A,r)]

• projection on A
– cost as above
– size of the result: n(π(R,A)) = V(A,r)

