CMSC 424 — Database design
Lecture 15
Hashing
Query processing

Mihai Pop

Admin iIssues

* Sample midterm on website later today

* No office hours on Wednesday — email me if you need help
preparing for midterm.

* Project questions?

Add'l. notes

B+-trees can be used as an index structure (as described
before)

B+-trees can also be used to organize the file
— leaves and internal nodes contain entire records
— fan-out is limited (due to large size of records)

Even B+-tree structures may need to be rebuilt to enhance
performance (e.g. due to insertions/deletions order of blocks
on disk becomes inefficient)

Secondary indices may need to be updated every time we
modify a B+-tree file (order of records may change even
though records did not change)

— solution: secondary indices point to the primary search
key instead of the record — slower access but no need for
frequent updates

Hash-based Indexes
— Static Hashing

— Dynamic Hashing
* Read on your own.
— Linear Hashing

Grid-files
R-Trees
etc...

More...

Unordered Indexes: Static Hashing

A bucket is a unit of storage containing one or more records (a bucket
is typically a disk block or several disk blocks)

In a hash file organization we obtain the bucket of a record directly
from its search-key value using a hash function

Hash function & is a function from the set of all search-key values K to
the set of all bucket addresses B

Hash function is used to locate records for access, insertion as well as
deletion

Records with different search-key values may be mapped to the same
bucket; thus entire bucket has to be searched sequentially to locate a
record.

Hashed File

* divide the set of blocks into buckets
* devise a hashing function that maps each key value into a bucket
V: set of key values

B: number of buckets
H: hashing function H:V->{0,1,2,...,B-1}

Example: V: 9 digit SS#, B: 1000, H: key MOD 1000
* search for, insert, delete, modify a key k do
— H(k) to get the bucket number

— search sequentially in the bucket (heap organization within each
bucket)

* selection of H: almost any function that generates “random” numbers
in [0,B-1]
— try to distribute evenly the keys into the B buckets

— H(key)=3 (constant function) is bad- all records go to the 3rd
bucket

— rule of thumb for MOD: prime number
* collisions: two or more key values go to the same bucket
— too many collisions increases the search time degrades performance

Hash Functions

Worst has function maps all search-key values to the same bucket; this

makes access time proportional to the number of search-key values in
the file

An ideal hash function is uniform, i.e., each bucket is assigned the
same number of search-key values from the set of all possible values

Ideal hash function is random, so each bucket will have the same
number of records assigned to it irrespective of the actual distribution
of search-key values in the file

Typical hash functions perform computation on the internal binary
representation of the search-key.

— For example, for a string search-key, the binary representations of
all the characters in the string could be added and the sum modulo
the number of buckets could be returned. .

— From book: hash function for strings:
s[0]:31" " +s[1]-31" *+.. . +s[n—1]

Hashed File

* hash table: holds the physical address of the buckets
Example:
EMP(ename,sal) H(sal): sal MOD 3
* overflow may occur for the following reasons:
— too many records
— poor hashing function
— skewed data (too many values hash to the same bucket)

* overtlow is handled by one of the two methods:
— chaining of multiple blocks in a bucket

— open addresszng if the hashed bucket H(k) is full, put it in H(k)+1. If
also full, in H(k)+2, etc.

— double hashing: hash once to H(k). If full, hash again with another
H’ (k). If still full, then apply any of the above methods

* performance depends on the [oading factor=# of records/(B*f) where f is
the number of keys in a block

— rule of thumb: when loading factor too high, double B and rehash

Search Cost of a Hashed File

assume the hash table is in main memory

— successful search: best case 1 block, worst all chained bucket
blocks, average half of worst

— unsuccessful search: best, worst, average all chained bucket blocks

— for loading factor of about 90% and a good hashing function
average is 1.2 blocks

Advantage of hashing: very fast for exact queries

Disadvantage of hashing : since the records are not sorted in any
order, it cannot do range queries

Hash Indices

* Hashing can be used not only for file organization, but also for index-
structure creation

* A hash index organizes the search keys, with their associated record
pointers, into a hash file structure

* Strictly speaking, hash indices are always secondary indices

— if the file itself is organized using hashing, a separate primary hash
index on it using the same search-key is unnecessary

— However, we use the term hash index to refer to both secondary
index structures and hash organized files.

Example of Hash Index

bucket 0

bucket 1
A-215
A-305

bucket 2
A-101
A-110
bucket 3
A-217
A-102

bucket 4
A-218

bucket 5

bucket 6
A-222

A-217

Brighton

750

A-101

Downtown

500

A-110

Downtown

600

A-215

Mianus

700

A-102

Perryridge

400

A-201

Perryridge

900

A-218

Perryridge

700

A-222

Redwood

700

A-305

Round Hill

350

Deficiencies of Static Hashing

In static hashing, function i1 maps search-key values to a fixed set of B
of bucket addresses

Databases grow over time. If initial number of buckets is too small,
performance will degrade due to too much overflows

If file size at some point in the distance future is anticipated and
number of buckets allocated accordingly, significant amount of space
will be wasted initially

If database shrinks, again space will be wasted

One option is periodic re-organization of the file with a new hash
function, but it is

— very expensive and
— impossible in 7-24 databases

Index Definition in SQL

* Create an index

<index-name> <relation-name>
<attribute-list>)

E.g.: b-index on branch(branch-name)

* Use to indirectly specify and enforce the condition
that the search key is a candidate key.

— Not really required if SQL integrity constraint is supported

* To drop an index
<index-name>

13. Query Processing

* Steps
1.parsing & translation: SQL ==> Internal relational form
2.optimization: pick amongst several the best plan
3.evaluation of the selected plan

relational algebra
expression

Q>

execution plan

parser and
translator

evaluation engine

data statistics
about data

query |

query
output

SQL is not “query friendly”

SQL command tells you WHAT to do not HOW to do it

select balance
from account
where balance < 2500

can be written as either:

—_— O-balance <2500 (Trbalance (account))
Trbalance (O-balance <2500 (account))

Picking among these depends on many factors (e.g. is there
an index on balance?, what type of index is used?...)

A query-evaluation plan also records additional information:

T palance (O-balance <2500, using index 1 (account))

Query Processing

» Cost parameters (some are easy to maintain some are very hard)

— statistical info maintained in the system’s catalog

n(r) = number of tuples in the relation r
b(r) = number of blocks containing tuples of relation r
s(r) = average size of a tuple of relation r

f(r) = blocking factor of r, I.e. the number of r tuples that fitin a
block

V(A,r) = number of distinct values of attribute Ainr
= n(r) if A is a key

SC(A,r) = average selectivity of attribute A in r (# of tuples selected
per value of A)

=1 if Aisakey
= n(r) / V(A,r) otherwise

Query processing

min(A,r) = minimum value of attribute A inr
max(A,r) = maximum value of attribute A inr

ITwo important computations

— I/O cost of each operation
* Number of blocks accessed
* Number of seeks

— the size of the result

Selection / Projection File Scan

Al: search for equality: R.A=c cost (seq. search rel. sorted)

=b(r)/2 + USC(A,r)/f(r) -1 average successful
= b(r)/2 average unsuccessful
A2: (binary search)

= [og b(r) Lh ISC(A,r)/f(r) -1 average successful
Size of the result: n(o(R.A=c))=SC(A,r)=n(r) / V(A,r)
search for inequality: R.A>c

— cost (file unsorted) = b(r)

(sorted on A) =Db(r)/2+ b(r)/2 (if we assume that half of the
tuples quality)

— size of the result: n(o(R.A>c))=[max(A,r)-c] * n(r) / [max(A,r) -
min(A,r)]
projection on A

— cost as above
— size of the result: n(mt(R,A)) = V(A1)

