CMSC 424 - Database design Lecture 16
Query processing
Mihai Pop

Admin issues

- Questions about midterm?
- Questions about project?

Sample midterm questions

- Do I need to know about: 4NF, multivalued dependencies? - NO
- 1. Given the schema $R(A, B, C, D, E)$, and functional dependencies A $>\mathrm{D}, \mathrm{B}->\mathrm{C}, \mathrm{CD}->\mathrm{E}, \mathrm{A}>\mathrm{BC}, \mathrm{E}->\mathrm{B}$.
- a) Is the schema in BCNF? If not, list an FD that violates BCNF.
- b) Is the schema in 3NF? If not, list an FD that violates 3NF.
- Decompose the schema from problem 1 into BCNF and 3NF.

Oracle: explain plan

```
delete plan_table;
explain plan for
select name
from country
where population > 10000000;
Explained
select
    substr(lpad(' ', level - 1) | | operation || ' (' | | options || ')', 1,30) "Operation",
    object_name "Object"
from
    plan_table
start with id = 0
connect by prior id = parent_id;
Operation Object
SELECT STATEMENT ()
TABLE ACCESS (FULL) COUNTRY
```


How to think about query processing

- $\mathrm{n}(\mathrm{r}), \mathrm{b}(\mathrm{r}), \mathrm{f}(\mathrm{r}), \mathrm{V}(\mathrm{A}, \mathrm{r}), \mathrm{SC}(\mathrm{A}, \mathrm{r})$ - values that can be computed without knowing what query you might run
- Think about how many results your query might retrieve
- Think about how they are organized on disk:
- sorted (A is a clustering index)
- unsorted (A is a secondary index)
- Think about how the index is organized - how many index blocks you need to hit to find the correct answer?
- Usually think of either average or worst-case scenarios.
- When retrieving range - think about what fraction that range represents from the total range of values in database.

Selection / Projection File Scan

- A1: search for equality: R.A=c cost (seq. search rel. sorted)

$$
\begin{array}{lll}
=\mathrm{b}(\mathrm{r}) / 2+\lceil\mathrm{SC}(\mathrm{~A}, \mathrm{r}) / \mathrm{f}(\mathrm{r})\rceil-1 & \text { average } & \text { successful } \\
=\mathrm{b}(\mathrm{r}) / 2 & & \text { average }
\end{array}
$$

- A2: (binary search)

$$
=\lceil\log \mathrm{b}(\mathrm{r})\rceil+\lceil\mathrm{SC}(\mathrm{~A}, \mathrm{r}) / \mathrm{f}(\mathrm{r})\rceil-1 \quad \text { average } \quad \text { successful }
$$

- Size of the result: $n(\sigma(\mathrm{R} . \mathrm{A}=\mathrm{c}))=\mathrm{SC}(\mathrm{A}, \mathrm{r})=\mathrm{n}(\mathrm{r}) / \mathrm{V}(\mathrm{A}, \mathrm{r})$
- search for inequality: R.A>c
$-\operatorname{cost}$ (file unsorted) $=b(r)$
(sorted on A) $=\mathrm{b}(\mathrm{r}) / 2+\mathrm{b}(\mathrm{r}) / 2$ (if we assume that half of the tuples qualify)
- size of the result: $\quad \mathrm{n}(\sigma(\mathrm{R} . \mathrm{A}>\mathrm{c}))=[\max (\mathrm{A}, \mathrm{r})-\mathrm{c}]^{*} \mathrm{n}(\mathrm{r}) /[\max (\mathrm{A}, \mathrm{r})-$ $\min (\mathrm{A}, \mathrm{r})$]
- projection on A
- cost as above
- size of the result: $n(\pi(\mathrm{R}, \mathrm{A}))=\mathrm{V}(\mathrm{A}, \mathrm{r})$

Selection with Indexed Scan R.A=c

- A3: Primary index on key:
- cost $=($ height +1$)+1$
height +1 is needed to get to the leaves (unsuccessful stops at the leaves)

- A4: Primary (clustering) index on non-key:
- cost $=($ height +1$)+1+\lceil$ SC(A,r) $/ \mathrm{f}(\mathrm{r})\rceil$ all tuples with the same value are clustered
- A5: Secondary (non-clustering) index
- cost $=($ height +1$)+1+\mathrm{SC}(\mathrm{A}, \mathrm{r})$
tuples with the same value are scattered
- It can be very expensive
" size of the result: $\quad n(\sigma(R . A=c))=S C(A, r)=n(r) / V(A, r)$

Selection with Indexed Scan R.A>=c

A6: Primary index on key:

- search for $A=c$; then pick tuples with $A>=c$
- cost $=($ height +1$)+b(r) / 2$ w/o a bound constant c

- $\quad=\quad-\quad+\mathbf{n}(\mathbf{r})(\max (\mathrm{A}, \mathbf{r})-\mathrm{c}) /(\max (\mathrm{A}, \mathrm{r})-\min (\mathrm{A}, \mathrm{r})) / \mathrm{f}(\mathrm{r})$
- Primary (clustering) index on non-key:
- cost = as above (all tuples with the same value are clustered)

A7: Secondary (non-clustering) index

- cost $=($ height +1$)+B$-treeLeaves $/ 2+n(r) / 2$ or
 tuples with the same value are scattered can be more expensive than file scan

- size of the result:

$$
n(\sigma(R . A>c))=[\max (A, r)-c]^{*} n(r) /[\max (A, r)-\min (A, r)]
$$

